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Abstract We propose an automatic system for organiz-
ing the content of a collection of unstructured videos of
an articulated object class (e.g., tiger, horse). By exploit-
ing the recurring motion patterns of the class across videos,
our system: (1) identifies its characteristic behaviors, and (2)
recovers pixel-to-pixel alignments across different instances.
Our system can be useful for organizing video collections
for indexing and retrieval. Moreover, it can be a platform
for learning the appearance or behaviors of object classes
from Internet video. Traditional supervised techniques can-
not exploit this wealth of data directly, as they require a
large amount of time-consuming manual annotations. The
behavior discovery stage generates temporal video intervals,
each automatically trimmed to one instance of the discovered
behavior, clustered by type. It relies on our novel motion rep-
resentation for articulated motion based on the displacement
of ordered pairs of trajectories. The alignment stage aligns
hundreds of instances of the class to a great accuracy despite
considerable appearance variations (e.g., an adult tiger and
a cub). It uses a flexible thin plate spline deformation model
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that can vary through time. We carefully evaluate each step
of our system on a new, fully annotated dataset. On behav-
ior discovery, we outperform the state-of-the-art improved
dense trajectory feature descriptor. On spatial alignment, we
outperform the popular SIFT Flow algorithm.

Keywords Articulated motion · Behavior discovery · Video
sequence alignment · Weakly supervised learning from
video

1 Introduction

Our goal is to automatically organize the content of a col-
lection of unstructured videos of an articulated object class
under weak supervision, i.e., only knowing that the object
class actually appears in each video (e.g., tiger, Fig. 1). The
main contribution of this paper is a fully automatic system
that inputs videos of an articulated object class and discovers
its characteristic behaviors (e.g., running, walking, sitting
down, Fig. 1, top), and also recovers the spatial alignment
across different instances of the same behavior (Fig. 1, bot-
tom).

Organizing unstructured video is important for a wide
variety of applications, such as video indexing and retrieval
(e.g., the TRECVid conference series Smeaton et al. 2006),
video database summarization (e.g., Tompkin et al. 2012;
Wan and Mérialdo 2009), and computer graphics applica-
tions (e.g., replacing an instance in a video with one from a
different video, Fig. 1). Moreover, it can help generate train-
ing data for supervised systems for action recognition (e.g.,
Wang and Schmid 2013;Yuan et al. 2009; Schuldt et al. 2004;
Gorelick et al. 2007) and object class detection (e.g., Felzen-
szwalb and Huttenlocher 2005; Bourdev and Malik 2009;
Felzenszwalb et al. 2010; Wang et al. 2013; Girshick et al.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0939-9&domain=pdf
http://orcid.org/0000-0002-3795-0689


Int J Comput Vis

(a) (b) (c)

Fig. 1 Output of our system. Top: examples of the behaviors discov-
ered automatically from a collection of unstructured videos of an object
class (tiger). From left to it right running, drinking, two different types
of walking, and sitting down. Our system uses a new descriptor for artic-
ulated motion that analyzes the displacement of pairs of trajectories. It
is fully automatic: the class label is the only supervision we require.
Videos with more behaviors are available at Del Pero et al. (2015b).

Bottom: within each type of behavior, we find pairs of short sequences
where the foreground moves in a consistent manner (third row), and
align them to a great accuracy (fourth row). Here we show an alignment
example from the running behavior (a), and one each from the two
different types of walking (b, c). The use of motion enables aligning
instances despite large variations in appearance (e.g., white and orange
tigers, adults and cubs). This step is also fully automatic

2014). These methods cannot fully exploit the abundance
of unstructured Internet videos due to the prohibitive cost
of generating ground-truth annotations, which explains the
recent interest in learning fromvideo underweak supervision
(Leistner et al. 2011; Prest et al. 2012; Tang et al. 2013).

Our method requires very little supervision (one class
label per video), and could potentially replace the tedious
and time-consuming manual annotations needed by super-
vised recognition systems. For example, action recognition
systems are typically trained on clips of human actors
performing scripted actions (Yuan et al. 2009; Ryoo and
Aggarwal 2009; Schuldt et al. 2004; Gorelick et al. 2007),
usually trimmed to contain a single action (Kuehne et al.
2011; Soomro et al. 2012). Discovering the behaviors of
a class from unstructured video could replace the process
of searching for examples of each behavior, as well as
temporally segmenting them out of the videos by hand. Anal-
ogously, traditional supervised methods for learning models
of object classes from still images (Cootes et al. 1998;
Felzenszwalb and Huttenlocher 2005; Bourdev and Malik
2009; Felzenszwalb et al. 2010; Wang et al. 2013; Girshick
et al. 2014) do not easily transfer to videos as they require
expensive location annotations. The alignments recovered
by our method could potentially replace the manual corre-
spondences needed by most popular methods for learning
object classes (Dalal and Triggs 2005; Felzenszwalb et al.
2010; Viola et al. 2005; Cinbis et al. 2013; Wang et al. 2013;
Girshick et al. 2014), including those requiring part-level
annotations (Felzenszwalb and Huttenlocher 2005; Bourdev

and Malik 2009; Azizpour and Laptev 2012). They can also
enable annotating large collections with little manual effort
via knowledge transfer (Vezhnevets and Ferrari 2014; Kuet-
tel et al. 2012; Lampert et al. 2009; Fei-Fei et al. 2007;
Malisiewicz et al. 2011). One could provide manual anno-
tations only for a few instances (e.g., segmentation masks
Malisiewicz et al. 2011; Vezhnevets and Ferrari 2014; Kuet-
tel et al. 2012 or 3-D models Malisiewicz et al. 2011; Tighe
and Lazebnik 2013), and then propagate them automatically
to many more instances via the recovered alignments.

Our focus is on highly articulated, deformable objects
like animals. Such classes are typically challenging, as they
exhibit a much wider variety of interesting behaviors com-
pared to more rigid objects (e.g., a train). Moreover, aligning
such objects is challenging due to their deformable nature.
These are also the reasons why articulated classes typically
require a greater annotation effort than rigid ones (Felzen-
szwalb and Huttenlocher 2005; Bourdev and Malik 2009;
Yang and Ramanan 2013).

A preliminary version of this work appeared at CVPR
2015 (Del Pero et al. 2015a) covering the behavior discovery
stage. In this journal paper,we introduce the spatial alignment
stage and present a more extensive experimental evaluation.

2 Overview of Our Approach

Given unstructured videos of an articulated object class, we
discover the class behaviors and recover spatial alignments
across different class instances (Fig. 1).We exploit the nature
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of video and recent advances in motion analysis (Papazoglou
and Ferrari 2013; Wang et al. 2011; Wang and Schmid 2013)
to make our system fully automatic, for example we use
motion segmentation (Papazoglou and Ferrari 2013) to esti-
mate the object’s 2-D location.

Tomodel themotion of an articulated object, we introduce
a new descriptor that captures the relative motion of its parts,
for example the knee and the ankle of an animal walking.
We do this by analyzing the relative displacement of pairs of
point trajectories (PoTs). PoTs are a key component of this
work, which we discuss and evaluate in detail.

Our system consists of two main stages: behavior discov-
ery and spatial alignment. The behavior discovery builds on
the PoTs descriptor. For the spatial alignment, we introduce
a technique for aligning short video sequences of the same
object class based on thin plate splines (TPSs).

Pairs of trajectories (Sect. 3). We model articulated motion
by analyzing the relative displacement of large numbers of
ordered trajectory pairs (PoTs). The first trajectory in the pair
defines a reference frame in which the motion of the second
trajectory is measured.We preferentially sample pairs across
joints, resulting in features particularly well-suited to repre-
senting the behavior of articulated objects. This has greater
discriminative power than state-of-the-art features defined
using single trajectories in isolation (Wang et al. 2011;Wang
and Schmid 2013).

In contrast to other popular descriptors (Jain et al. 2013;
Wang et al. 2011; Wang and Schmid 2013), PoTs are defined
solely by motion and so are robust to appearance variations
within the object class. In cases where appearance proves
beneficial for discriminating between behaviors of interest,
it is easy to combine PoTswith standard appearance features.

Behavior discovery (Sect. 4). Our method does not require
knowledge of the number or types of behaviors, nor that
instances of different behaviors be temporally segmented
within a video. Instead, we leverage that behaviors exhibit
consistency across videos, resulting in characteristic motion
patterns. Our method identifies motion patterns that recur
across several videos: it temporally segments them out of
the input videos, and clusters them by type. For this, we
use PoTs as motion representation, which allow us to distin-
guish between fine-grained behaviors, such as walking and
running. Note that our unsupervised discovery is very differ-
ent from simply classifying fixed temporal chunks of video
into behaviors (e.g., action recognition in UCF-101 Soomro
et al. 2012), which requires supervision (e.g., training data
for each behavior), and does not need to address the temporal
segmentation.

Spatial alignment (Sect. 5). Consider the problem of align-
ing any two instances of a tiger. This is challenging due to
differences in viewpoint (e.g., frontal and side), pose (jump-

ing and sitting down), and appearance (cub and adult). The
behavior discovery stage simplifies the problem by forming
clusters of videos exhibiting a consistent set of poses (e.g.,
walking, jumping). However, aligning two individual frames
with traditional techniques for aligning still images (Barnes
et al. 2010; Liu et al. 2008; Hartley and Zisserman 2000;
Lowe 2004) typically fails even in this scenario, due to the
significant appearance variations across instances and pose
variations within the same behavior (e.g., different phases
of walking). Instead, we align two short temporal sequences
where the objects exhibit consistentmotion (we identify these
sequences automatically within the behavior clusters).

We exploit the consistency in object motion to establish
reliable point correspondences between the sequences, and
combine this with edge features to align them with great
accuracy (Fig. 1). We model the transformation between the
two sequences using a series of TPSs (Wahba 1990). TPS are
an expressive non-rigid mapping that can accommodate for
the deformations of complex articulated objects. TPS have
been used before mostly for registration (Chui and Rangara-
jan 2003) and shape matching (Ferrari et al. 2010) in still
images. We extend these ideas to video by fitting TPS that
vary smoothly in time.

2.1 System Architecture

We provide here a high-level description of the architecture
of our system (Fig. 2).

Input video shots. The input is a collection of video shots
of the same object class. By shot we mean a sequence
of frames without scene transitions (Kim and Kim 2009).
We work with Internet videos automatically partitioned into
shots by thresholding histogram differences across consecu-
tive frames (Prest et al. 2012; Kim and Kim 2009). The only
supervision given is the knowledge that each shot contains
the object class.

Foreground masks.We use the fast video segmentation tech-
nique (Papazoglou and Ferrari 2013) on each input shot, to
automatically segment the foreground object from the back-
ground. These foreground masks remove features on the
background and facilitate the entire process. To handle shots
containing multiple moving objects, we only keep the largest
connected component in the foreground mask. This typically
corresponds to the largest object in the shot (a similar strategy
is used in Papazoglou and Ferrari 2013 for evaluation).

Step 1: PoT extraction (Sect. 3). We extract PoTs from each
input shot, which we use as features in the following steps.

Step 2: Partitioning into temporal intervals (Sect. 4.1).
Clustering the input shots directly would fail to discover
behaviors, since each shot typically contains several differ-
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Fig. 2 System architecture and terminology (Sect. 2.1). The input is
a collection of shots showing the same class (top), which can be of
any length. We first extract foreground masks (Papazoglou and Ferrari
2013).We then extract PoTs descriptors from each shot (step 1, Sect. 3).
Each shot is then partitioned into shorter temporal intervals that are each
likely to contain a single behavior (step 2, Sect. 4.1), which we cluster

using PoTs (step 3, Sect. 4.2). For each two intervals in the same clus-
ter, we extract pairs of short sequences showing consistent foreground
motion (CMPs), which become candidates for spatial alignment (step
4, Sect.5.1). Last, we align the two sequences of each CMP (step 5,
Sects. 5.2, 5.3)

ent behaviors. For example, a tiger may walk for a while,
then sit down and finally stretch. We use motion cues to par-
tition shots into single-behavior intervals, e.g., a “walking”,
a “sitting down” and a “stretching” interval.

Step 3: Behavior discovery by clustering (Sect. 4.2). We use
the extracted PoTs to build a descriptor for each interval from
step 2, and cluster them. At this stage of the pipeline, each
cluster contains several intervals of the same behavior, each
temporally trimmed to its duration.

Step 4: Candidates for spatial alignment (Sect. 5.1). We
exploit the consistent motion of two intervals in the same
behavior cluster to drive their alignment.However,we cannot
expect the motion to be consistent for their entire duration:
this would require that the object performs exactly the same
movements in the same order in both intervals. Hence, we
identify a few shorter sequences of fixed length between the
two intervals that exhibit consistent foreground motion. We
term these consistent motion pairs (CMPs), and use them as
candidates for spatial alignment.

Step 5: Spatial alignment (Sects. 5.2, 5.3). For each CMP, we
attempt to align its two sequences. If the algorithm succeeds,
we output the aligned CMP.We consider two different spatial
alignment models: homographies and TPS.

2.2 Experiments Overview

Wepresent extensive quantitative evaluation on a new dataset
containing several hundreds videos of three articulated object

classes (dogs, horses and tigers, Sect. 7.1). We produced
the annotations necessary to evaluate the two outputs of our
method: (1) per-frame behavior labels in over 110,000 frames
to evaluate behavior discovery, and (2) 2-D positions of 19
landmarks (e.g., left eye, front right ankle) in over 35,000
frames to evaluate spatial alignment.

The results demonstrate that our method can discover
behaviors from a collection of unconstrained video, while
also segmenting out behavior instances from the input videos
(Sects. 7.2, 7.3). On these tasks, PoTs perform signifi-
cantly better than existing appearance- and trajectory-based
descriptors (e.g., histogram of oriented gradient (HOG) and
dense trajectory features, DTFs Wang and Schmid 2013).

Our TPS based alignment outperforms existing alterna-
tives that are either unsuitable for articulated objects (e.g.,
homographies Caspi et al. 2006; Hartley and Zisserman
2000; Lowe 2004), or designed to align still images (e.g.,
the popular SIFT Flow algorithm Liu et al. 2008). Our sys-
tem recovers approximately 1000 pairs of correctly aligned
sequences from 100 real-world video shots of tigers, and 800
aligned sequences from 100 shots of horses. As the recovered
alignment is between sequences, this entails correspondences
between several thousand pairs of frames (Sect. 7.4.3).

3 Pair of Trajectories (PoTs)

We represent articulated object motion using a collection of
ordered PoTs, tracked over n frames. We compose PoTs
from the trajectories extracted with a dense point tracker
(e.g., Wang and Schmid 2013): only two trajectories follow-
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Fig. 3 Modeling articulated motion with PoTs. Two trajectories in a
PoT are ordered based on their deviation from the median velocity of
the object: the anchor (yellow) deviates less than the swing (red). In I,
the displacement of the swing relative to the anchor follows the swing-
ing motion of the paw with respect to the shoulder. While both move
forward as the tiger walks, the paw is actually moving backwards in a
coordinate system centered at the shoulder. This back-and-forthmotion
is captured by the relative displacement vectors of the pair (in black) but
missed when individual trajectories are used alone. The PoT descriptor

is constructed from the angle θ and the black vectors dk, shown in II
(Sect. 3.1). The two trajectories in a PoT are selected such that they
track object parts that move differently. A few selected PoTs are shown
in III and IV. Paws move differently than the head (a), hip (c), knees
(b, d), or other paws (e). In IV, the head rotates relative to the neck,
resulting in different PoTs (f, g). Our method selects these PoTs with-
out requiring prior knowledge of the object topology (Sect. 3.2) (Color
figure online)

(a) (b) (c) (d) (e) (f)

Fig. 4 PoT selection on two different examples: a tiger walking (top)
and one turning its head (bottom).We construct PoT candidates from the
trajectories on the foreground mask (a), using all possible pairs (Sect.
3.2).We prefer candidates where the anchor is closer to themedian fore-
ground velocity, denoted by dark areas in b, while the swing follows a
different motion (bright areas). We keep the highest θP% ranking can-
didates according to this criterion. We show the selected PoTs for two

different values of θP (c, e). Too strict a θP ignores many interesting
PoTs (c), like those involving trajectories on the head in the top row.
We also show the trajectories used as anchors (yellow) and swings (red)
without the lines connecting them (d, f). Imagine connecting any anchor
with any swing: in most cases, the two follow different, independently
moving parts of the object, which is the key requirement of a PoT. We
use θP = 0.15 in our experiments (e, f) (Color figure online)

ing parts of the object moving relatively to each other are
selected as a PoT, as these are the pairs that move in a con-
sistent and distinctive manner across different instances of a
specific behavior. For example, the motion of a pair connect-
ing a tiger’s knee to its paw consistently recurs across videos
of walking tigers (Figs. 3, 4). By contrast, a pair connect-
ing two points on the chest (a rather rigid structure) may be
insufficiently distinctive, while one connecting the tip of the
tail to the nose may lack consistency. Note also that a trajec-
tory may simultaneously contribute to multiple PoTs (e.g., a
trajectory on the front paw may form pairs with trajectories
from the shoulder, hip, and nose).

Although we often refer to PoTs using semantic labels for
the location of their component trajectories (eye, shoulder,

hip, etc.), these are used only for convenience. PoTs do not
require semantic understanding or any part-based or skeletal
model of the object, nor are they specific to a certain object
class. Furthermore, the collection of PoTs is more expressive
than a simple star-like model in which the motion of point
trajectories are measured relative to the center of mass of the
object (i.e., normalizing by the dominant object motion). For
example,wefind the “walking” cluster (Fig. 1) based onPoTs
formed by various combinations of head–paw (Fig. 3 III, a),
hip–knee (c), knee–paw (b, d), or even paw–paw trajectories
(e).

Figure 3 (III, IV) shows a few examples of PoTs selected
from two tiger videos. We define PoTs in Sect. 3.1, while we
explain how to select PoTs from real videos in Sect. 3.2.
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3.1 PoT Definition

PoT ordering: anchors and swings. The two trajectories in a
PoT are ordered, i.e., we always measure the displacement
of the second trajectory (swing) in the local coordinate frame
defined by the first (anchor). We select as anchor the trajec-
tory whose velocity is closer to the median velocity of pixels
on the foreground mask, aggregated over the length of the
PoT (Sect. 3.2). This approximates the median velocity of
the whole object. This criterion generates a stable ordering,
repeatable across the broad range of videos we examine. For
example, the trajectories on the legs in Fig. 3 are consistently
chosen as swings while those on the torso as anchors.

Displacement vectors. In each frame fk ,we compute the vec-
tor rk from anchor to swing (cyan lines in Fig. 3). Starting
from the second frame, a displacement vector dk is com-
puted by subtracting the vector rk−1 of the previous frame
(dashed cyan) from the current rk (solid cyan). dk captures
themotion of the swing relative to the anchor by canceling out
the motion of the latter. Naively employing the cyan vectors
rk as raw features does not capture relative motion as effec-
tively, because the variation in rk through time is dominated
by the spatial arrangement of anchor and swing rather than
by the change in relative position between frames (compare
the magnitudes of the cyan and black vectors in Fig. 3). Note
thisway of computing the displacement vectors is invariant to
camera panning, since the relative motion of the trajectories
does not change whether the camera is static or panning.

PoT descriptor. The descriptor P has two parts: (1) the ini-
tial position of the swing relative to the anchor, and (2) the
sequence of normalized displacement vectors over time:

P =
(

θ,
d2

D
, . . . ,

dn

D

)
, (1)

where θ is the angle fromanchor to swing in the first frame (in
radians) and the normalization factor is the total displacement
D = ∑n

k=2 ||dk||. The DTFs descriptor (Wang et al. 2011)
employs a similar normalization. Note also that the first term
in P records only the angle (and not the magnitude) between
anchor and swing; this retains scale invariance and enables
matching PoTs between objects of different size. The dimen-
sionality of P is 2 · (n − 1) + 1; in all of our experiments
n = 10.

3.2 PoT Selection

We explain here how to automatically form PoTs out of a
set of trajectories extracted with a dense point tracker (Wang
and Schmid 2013). We start with a summary of the process
and give more details later. First, we remove trajectories on

the background using the foreground masks. Then, for each
frame f we build the set P f of PoTs starting at that frame.
For computational efficiency, we directly setP f = ∅ for any
frame unlikely to contain articulated motion. Otherwise, we
form candidate PoTs from all pairs of foreground trajectories
{ti , t j } extending for at least n frames after f. Finally, we
retain in P f the candidates most likely to be on object parts
moving relative to each other.

Removing background trajectories. State-of-the-art point tra-
jectories already attempt to limit trajectories to foreground
objects (Wang and Schmid 2013), but often fail on the wide
range of videos we use. The video segmentation technique
we use (Papazoglou and Ferrari 2013) handles unconstrained
video, and reliably detects articulated objects even under sig-
nificant motion and against cluttered backgrounds. Hence,
we remove point trajectories that fall outside the foreground
mask produced by Papazoglou and Ferrari (2013). Results
show that our overall method is robust to inaccurate fore-
ground masks because they only affect a fraction of the PoT
collection (Sect. 7.2).

We also use the masks to estimate the median velocity of
the object, computed as themedian optical flowdisplacement
over all pixels in the mask.

Pruning frames without articulated motion. A frame is
unlikely to contain articulated motion (hence PoTs) if the
optical flow displacement of foreground pixels is uniform.
This happens when the entire scene is static, or the object
moves with respect to the camera but the motion is not artic-
ulated. We define s( f ) = 1

n

∑ f +n−1
i= f σi , where σi is the

standard deviation in the optical flow displacement over the
foreground pixels at frame i normalized by the mean, and n
the length of the PoT. We set P f = ∅ for all frames where
s( f ) < θF , thereby pruning frames unlikely to contain any
PoT. We choose θ on 16 cat videos in which we manually
labeled frames without articulated motion. We set θF = 0.1,
which yields precision 0.95 and recall 0.75 (very similar per-
formance is achieved for 0.05 ≤ θF ≤ 0.2).

PoTcandidates and selection. The candidatePoTs for a frame
f are all ordered PoTs {ti , t j } that start in f and exist in the
following n − 1 frames (Fig. 4a). We score a candidate pair
{ti , t j } using

S
({
ti = a, t j = s

}) =
f +n−1∑
k= f

∥∥∥vks − vkm

∥∥∥ −
∥∥∥vka − vkm

∥∥∥ ,

(2)

where vkm is the median velocity at frame k, and vks , vka are
the velocities of the swing and anchor. The first term favors
pairswhere the swing velocity deviates a lot from themedian,
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while the second term favors pairs where the anchor velocity
is close to themedian.As seen in Fig. 4, this generates a stable
PoT ordering, for example the swings fall on the legs as the
tiger walks (top), or on the turning head (bottom). We rank
all candidates using (2) and retain the top θP% candidates
as PoTs P f for this frame (Fig. 4c–f). In all experiments we
use θP = 0.15. Since we score all possible pairs with (2), a
particular trajectory can serve as anchor in one pair and as
swing in a different pair, depending on the velocity of the
other trajectory in the pair.

4 Behavior Discovery

The behavior discovery stage inputs a set of shots S of the
same class (Fig. 2, top) and outputs clusters of temporal inter-
vals, C = (c1, . . . , ck) corresponding to behaviors (step 3 in
Fig. 2). For the “tiger” class, we would like a cluster with
tigers walking, one with tigers turning their head, and so on.
We first temporally partition shots into single behavior inter-
vals (Sect. 4.1). Then we cluster these intervals to discover
recurring behaviors (Sect.4.2).

4.1 Temporal Partitioning

An input shot typically contains several instances of differ-
ent behaviors each. It would be easier to cluster intervals
corresponding to just one instance of a behavior, and ide-
ally covering its whole duration. Here we partition each
shot into such single behavior intervals. Boundaries between
such intervals cannot be detected using simple color his-
togram differences (unlike shot boundaries Kim and Kim
2009). Further, naively partitioning into fixed-length inter-
vals invariably ends up either over- or under-partitioning.
Instead, we use an adaptive strategy based on two different
motion cues: pauses and periodicity.

Partitioning on pauses. The object often stays still for a brief
moment between two different behaviors. We detect such
pauses as sequences of three or more frames without articu-
lated object motion (Sect. 3.2).

Partitioning based on periodicity. As some sequences lack
pauses between different, but related behaviors (e.g., from
walking to running), we also partition based on periodic
motion. For this we use time–frequency analysis, as periodic
motion patterns like walking, running, or licking typically
generate peaks in the frequency domain (examples available
on our website Del Pero et al. 2015b).

We model an interval as a time sequence s(t) = bPf t ,

where bPf t is a bag-of-words (BoWs) of PoTs at frame f t .We
convert s(t) toV one-dimensional sequences and sum the fast
Fourier transform (FFT) of the individual sequences in the

frequency domain (V is the codebook size). If the height of
the highest peak is≥θH ,we consider the interval as periodic.
We normalize the total energy to make sure it integrates to 1.
Using the sum of the FFTs makes the approach more robust,
since peaks arise only if several codewords recur with the
same frequency.

Naively doing time–frequency analysis on an entire
interval typically fails because it might contain both peri-
odic and non-periodic motion (e.g., a tiger walks for a
while and then sits down). Hence, we consider all pos-
sible sub-intervals using a temporal sliding window and
label the one with the highest peak as periodic, provided
its height ≥θH . The remaining segments are reprocessed to
extract motion patterns with different periods (e.g., walk-
ing versus running) until no significant peaks remain. For
robustness, we only consider sub-intervals where the period
is at least five frames and the frequency at least three
(i.e., the period repeats at least three times). We empir-
ically set θH = 0.1, which produces very few false
positives.

4.2 Clustering Intervals

We use k-means to form a codebook from one million
PoT descriptors randomly sampled from all intervals, using
Euclidean distance.1 We run k-means eight times and choose
the clustering with lowest energy to reduce the effects of
random initialization (Wang and Schmid 2013).We then rep-
resent an interval as a BoW histogram of the PoTs it contains
(L1-normalized).

We cluster the intervals using hierarchical clustering with
complete-linkage (Johnson 1967). We found this to perform
better than other clustering methods (e.g., single-linkage, k-
means) for both PoTs and the improvedDTFs, (IDTFs;Wang
and Schmid 2013) descriptor, which we compare against in
the experiments (Sect. 7.2).

Hierarchical clustering requires computing distances
between items. Given BoWs of PoTs bu and bv for inter-
vals Iu and Iv, we use

d (Iu, Iv) = −exp (− (1 − HI (bu, bv))) , (3)

where HI denotes histogram intersection. We found this to
perform slightly better than the χ2 distance. Note that this
function can be also used on BoWs of descriptors other than
PoTs. Additionally, it can be extended to handle different
descriptors that use multiple feature channels, such as IDTFs
(Wang and Schmid 2013). In this case, the interval represen-
tation is a set of BoWs (b1u, . . . , b

C
u ), one for each of the C

1 Since the PoT descriptor is heterogenous (Sect. 3.1), we ran prelimi-
nary experiments on held-out data to weigh the relative importance of θ
and the displacement vectors (analogously to the way we set the other
parameters, Sect. 7.2.1). We found the optimal weight is 1.
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channels. Following Wang and Schmid (2013), we combine
all channels into a single distance function

d (Iu, Iv) = −exp

(
−

C∑
i=1

1 − HI(biu, b
i
v)

Ai

)
, (4)

where Ai is the average value of (1 − HI) for channel i.

5 Sequence Alignment

Having clustered intervals by behavior type, we can search
for suitable candidates for spatial alignment, i.e., pairs of
short sequences with consistent foreground motion (dubbed
CMPs, Fig. 2, step 4). This is discussed in Sect. 5.1.

We have explored a variety of approaches for sequence
alignment, and report on two representative methods here
(Fig. 6). The first is a coarse, global alignment generated by
fitting a single homography to foreground trajectory descrip-
tors matched between the two sequences (Sect. 5.2). The
second approach fits a finer, non-rigid TPS mapping to edge
points extracted from the foreground regions of each frame.
We allow TPS to vary smoothly through the sequence (Sect.
5.3). As we show in our experiments, the TPS prove more
suitable for aligning complex articulated objects (Sect. 7.4).

5.1 Extracting CMP Candidates

Given two intervals p and q in the same behavior cluster,
we extract as CMPs the top 10 ranked pairs of subsequences
between them according to the following metric (Fig.5). Let
di j be the HI between BoW descriptors computed for frame
i in p and frame j in q. We compute di j just like in (4),
except that we aggregate only the descriptors in the specific
frame rather than the whole interval. The similarity between
the T -frame subsequence of p starting at frame i and the
subsequence of q starting at frame j is

s
([

f pi , . . . , f pi+T−1

]
,
[
f qj , . . . , f qj+T−1

])
=

T−1∑
t=0

d(i+t)( j+t).

(5)

This measure preserves the temporal order of the frames,
whereas aggregating the BoW over the whole sequences as
in (4) would not. To compute di j we combine two chan-
nels: PoTs and motion boundary histogram (MBH; Wang
and Schmid 2013).

We found this scheme extracts CMPs that reliably show
similar foregroundmotion and form good candidates for spa-
tial alignment (Sect. 7.4.2). Restricting the search of CMPs
within a behavior cluster prunes unsuitable candidates (e.g., a

Fig. 5 Extracting CMPs from two intervals. First, we approximate the
pairwise distance between frames as the histogram distance between
their BoWs (which contains all motion descriptors through the frame,
Sect. 5.1). Then we keep as CMPs the top scoring pairs of sequences
of length T with respect to (5). For the intervals above, the number of
pairs of sequences to score is (n − T ) · (m − T )

tiger jumping and one rolling on the ground). Using only the
top 10 pairs according to (5) further reduces the search space,
extracting a manageable set of CMPs (e.g., 3000 CMPs in a
dataset of 100 tiger shots, where we have to align 300 pairs
of intervals after the behavior discovery stage, Sect. 7.4.3).
The alternative strategy of trying to align all possible pairs
of subsequences in the input shots is instead quadratic in the
number of input frames (∼300 million), and thus computa-
tionally impractical.

5.2 Homography-Based Sequence Alignment

Traditionally, homographies are used to model the mapping
between two still images, and are estimated from a set of
2-D point correspondences (Hartley and Zisserman 2000).
Instead, we estimate the homography from trajectory cor-
respondences between two sequences (in a CMP). We first
review the traditional approach (Sect. 5.2.1), and then present
our extensions (Sects. 5.2.2–5.2.3).

5.2.1 Homography Between Still Images

A 2-D homography Huv is a 3 × 3 matrix that can be deter-
mined from four or more point correspondences Xu ↔ Xv

by solving

Xu = HuvXv. (6)

RANSAC (Fischler and Bolles 1981) estimates a homog-
raphy from a set of putative correspondences Puv =
{(xu, yu) ↔ (xv, yv)} that may include outliers. Tradi-
tionally, Puv contains matches between local appearance
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(a) (b) (c) (d) (e)

Fig. 6 Aligning sequences with similar foreground motion. We first
estimate a foreground mask (green) using motion segmentation (a). We
then fit a homography to matches between point trajectories (b, Sect.
5.2). In cweproject the foreground pixels in the first sequence (top) onto
the second (bottom) with the recovered homography. This global, coarse

mapping is often not accurate (note the misaligned legs and head). We
refine it by fitting thin-plate splines (TPSs) to edge points extracted
from the foreground (e, Sect. 5.3). The TPS mapping is non-rigid and
provides a more accurate alignment for complex articulated objects (d)
(Color figure online)

descriptors, like SIFT (Lowe 2004). RANSAC operates by
running a large number of trials, each consisting of ran-
domly sampling four point correspondences fromPuv,fitting
a homography to them, and counting the number of inliers it
has in the whole set Puv. In the end, RANSAC returns the
homography with the largest number of inliers.

5.2.2 Homography Between Video Sequences

In video sequences, we use point trajectories as units for
matching, instead of points in individual frames (Fig. 6b).
We extract trajectories in each sequence and match them
using a modified trajectory shape (TS) descriptor (Wang and
Schmid 2013) (Fig. 7). We match each trajectory in the first
sequence to its nearest neighbor in the second with respect
to Euclidean distance. We use trajectories which are T = 10
frames long, and only match those starting in the same frame
in both sequences. Each trajectory match provides T point
correspondences (one per frame).

We consider two alternative ways to fit a homography
to the trajectory matches, called ‘Independent Matching’
(IM) and ‘Temporal Matching’ (TM). IM treats the point
correspondences generated by a single trajectory match
independently during RANSAC. TM instead samples four
trajectory matches at each RANSAC iteration, and solves
(6) in the least squares sense using the 4 · T point cor-
respondences. A trajectory match is considered an outlier
only if more than half of its point correspondences are
outliers. TM encourages geometric consistency over the
duration of the CMP, while IM could potentially overfit
to point correspondences in just a few frames. In prac-
tice, our experiments show that TM is superior to IM
(Sect. 7.4).

We also considered matching PoTs across the sequences
instead of individual trajectories, but this is less efficient

Fig. 7 Modifying the TS descriptor. The TS descriptor is the concate-
nation of the 2-D displacement vectors (green) of a trajectory across
consecutive frames. TS works well when aggregated in unordered rep-
resentations like bag-of-words (Wang and Schmid 2013), but matches
found between individual trajectories are not very robust, e.g., the TS
descriptors for the trajectories on the torso of a tigerwalking are almost
identical. We make TS more discriminative by appending the vector
(yellow) between the trajectory and the center of mass of the foreground
mask (green) in the frame where the trajectory starts (Sect. 5.2.2). We
normalize this vector by the diagonal of the bounding box of the fore-
ground mask to preserve scale invariance (Color figure online)

because each trajectory can be part of many PoTs (we can
build O(n2) PoTs out of n trajectories). Computationally,
matching two sets of trajectories of size n and m is O(nm),

while with PoTs it would be O(n2m2).

5.2.3 Using the Foreground Mask as a Regularizer

The estimated homography tends to be inaccurate when the
input matches do not cover the entire foreground (Fig. 9).
To address this issue, we note that the bounding boxes of
the foreground masks (Papazoglou and Ferrari 2013) induce
a very coarse global mapping (Fig. 8). Specifically, we
include the correspondences between the bounding box cor-
ners Fu ↔ Fv in (6):
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Fig. 8 Matching the corners between the bounding boxes of the fore-
ground mask provides additional point correspondences (Sect. 5.2.3).
These are too coarse to provide a detailed spatial alignment between the
two sequences and are also sensitive to errors in the foreground masks,
but they are useful when combined with point correspondences from
trajectory matches (Fig. 9)

Fig. 9 Top: trajectory matches (yellow) often cover only part of the
object. Here, the homography overfits to the correspondences on the
head, providing an incorrect mapping for the legs (right). Bottom:
adding correspondences from the bounding boxes of the foreground
masks (Papazoglou and Ferrari 2013) provides a more stable mapping
(right, Sect. 5.2.3). Note how also these correspondences are found
automatically by our method (no manual intervention needed) (Color
figure online)

min
Huv

‖HuvXv − Xu‖ + ‖HuvFv − Fu‖ . (7)

This form of regularization makes our method much more
stable (Fig. 9).

5.3 Temporal TPS for Sequence Alignment

We now present our approach to sequence alignment based
on time-varying TPSs (TTPSs). Unlike a homography, TTPS
allows for local warping, which is more suitable for putting
different object instances in correspondence.We build on the
popular TPS robust point matching algorithm (TPS-RPM;
Chui and Rangarajan 2003), originally developed to align
point sets between two still images (Sect. 5.3.1). We extend

TPS-RPM to align two sequences of frames with a TPS that
evolves smoothly over time (Sect. 5.3.2).

5.3.1 TPS-RPM

A TPS f comprises an affine transformation d and a non-
rigid warp w. The mapping is a single closed-form function
for the entire space, with a smoothness term L(f) defined as
the sum of the squares of the second derivatives of f over the
space (Chui and Rangarajan 2003). Given two sets of points
U = {ui } andV = {vi } in correspondence, f can be estimated
by minimizing

E(f) =
∑
i

‖ui − f (vi )‖2 + λ‖L(f)‖. (8)

U and V are typically the position of detected image features
(we use edge points, Sect. 5.3.2).

As the point correspondences are typically not known
beforehand, TPS-RPM jointly estimates f and a soft-assign
correspondence matrix M = {mi j } by minimizing

E(M, f) =
∑
i

∑
j

mi j
∥∥ui − f

(
v j

)∥∥2 + λ‖L(f)‖. (9)

TPS-RPMalternates between updating f by keepingM fixed,
and the converse. M is continuous-valued, allowing the algo-
rithm to evolve through a continuous correspondence space,
rather than jumping around in the space of binary matri-
ces (hard correspondence). It is updated by setting mi j as
a function of the distance between ui and f(v j ) (Chui and
Rangarajan 2003). The TPS is updated by fitting f between
V and the current estimates Y of the corresponding points,
computed from U and M.

TPS-RPM optimizes (9) in a deterministic annealing
framework, which enables finding a good solution evenwhen
starting from a relatively poor initialization. The method is
also robust to outliers in U and V (Chui and Rangarajan
2003).

5.3.2 Temporal TPS

Our goal is to find a series of TPS mappings F =
{f1, . . . , fT }, one at each frame in the input sequences. We
enforce temporal smoothness by constraining each mapping
to use a set of point correspondences consistent over time. Let
U t = {uti } be the set of points for frame t in the first sequence
(with V t defined analogously for the second sequence). U t

contains both edge points extracted in t as well as edge points
extracted in other frames and propagated to t via optical flow
(Fig. 10). Each U t stores points in the same order, so that u1i
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Fig. 10 Edge propagation using optical flow. In each sequence, we
propagate edge points extracted at time t using optical flow, indepen-
dently in each sequence (dashed lines). Our TTPS model (Sect. 5.3.2)
enforces that the correspondences between edge points at time t (solid
lines) be consistent with their propagated version at time t + 1

and uτ
i ∀τ > 1 are related by flow propagation.2 We solve for

the TTPS F by minimizing

E(M, F)

=
∑
t

⎛
⎝∑

i

∑
j

mt
i j

∥∥∥uti − f t
(
vtj

)∥∥∥2 + λ
∥∥L (

f t
)∥∥

⎞
⎠ ,

(10)

subject to the constraint that m1
i j = mτ

i j ∀i, j, τ > 1. That
is, if two points are in correspondence in frame t, they
must still be in correspondence after being propagated to
frame τ.

Inference. Minimizing (10) is very challenging. In practice,
we find an approximate solution by first using TPS-RPM
to fit a TPS fτ to the edge points extracted at time τ only.
This is initialized with the homography found in Sect. 5.2.3.
Given the constraints on the mt

i j , f
τ fixes the correspon-

dences between U t and V t in all other frames. We then fit the
f t ∀t 	= τ to these correspondences. We repeat this process
starting in each frame (i.e., we try all τ ∈ [1, . . . , T ]), gener-
ating a total of T TTPS candidates. Finally, we return the one
with the lowest energy (10). Thanks to this efficient approx-
imate inference, we can apply TTPS to align thousands of
CMPs.

2 Consider a simple example with T = 2, where we extract 10 points
at t = 1 and 20 at t = 2:U1 and U2 contain 30 points; the first 10 in
U1 are the point extracted at t = 1, the next 20 those extracted at t = 2
and propagated to t = 1 with the backward flow; the first 10 in U2 are
the points extracted at t = 1 propagated to t = 2 with forward flow, the
next 20 those extracted at t = 2.

(a) (b) (c) (d)

Fig. 11 Edge extraction (Sect. 5.3.2). Using edges extracted from the
entire image confuses the TTPS fitting due to background edge points
(b). Using only edges on the foreground mask (c) loses useful edge
points if the mask is inaccurate, e.g., the missing legs in a. We instead
weigh the edge strength (b) by the distance transform (DT) with respect
to the foreground mask. This is robust to errors in the mask, while
pruning most background edges (d)

Foreground edge points. We extract edges using the edge
detector (Dollar and Zitnick 2013) trained on the Berkeley
segmentation dataset and benchmark (Martin et al. 2001).We
remove clutter edges far from the object by multiplying the
edge strength of each point with the distance transform (DT)
of the image with respect to the foreground mask (i.e., the
distance of each pixel to the closest point on the mask). We
prune points scoring ≤0.2. This removes most background
edges, and is robust to cases where the mask does not cover
the complete object (Fig. 11). To accelerate the TTPS fitting
process,we further subsample the edge points to atmost 1000
per frame.

6 Related Work

6.1 Learning from Videos

A few recent works exploit video as a source of training
data for object class detectors (Leistner et al. 2011; Prest
et al. 2012; Tang et al. 2013). They separate object instances
from their background based on motion, thus reducing the
need for manual bounding-box annotation. However, their
use of video stops at segmentation. They make no attempt
at modeling articulated motion or finding common motion
patterns across videos. Ramanan et al. (2006) build a 2-D
part-based model of an animal from one video. The model
is a pictorial structure based on a 2-D kinematic chain of
coarse rectangular segments. Their method operates strictly
on individual videos and therefore cannot learn class models.
It is tested on just three simple videos containing only the
animal from a single constant viewpoint.

In the domain of action recognition, classification is typ-
ically formulated as a supervised problem (Schuldt et al.
2004; Kuehne et al. 2011; Soomro et al. 2012). Work on
unsupervised motion analysis has largely been restricted to
the problem of dynamic scene analysis (Kuettel et al. 2010;
Hospedales et al. 2009; Mahadevan et al. 2010; Wang et al.
2009; Hu et al. 2006; Zhao and Medioni 2011). These works
typically consider a fixed scene observed at a distance from
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a static camera; the goal is to model the behavior of agents
(typically pedestrians and vehicles) and to detect anomalous
events. Features typically consist of optical flow at each pixel
(Hospedales et al. 2009;Kuettel et al. 2010;Wang et al. 2009)
or single trajectories corresponding to tracked objects (Hu
et al. 2006; Zhao and Medioni 2011).

Although many approaches do not easily transfer from
the supervised to the unsupervised setting, a breakthrough
from the action recognition literature that does is the con-
cept of dense trajectories. The idea of generating trajectories
for each object from large numbers of KLT interest points in
order to model its articulation was simultaneously proposed
by Matikainen et al. (2009) and Messing et al. (2009) for
action recognition. These ideas were extended and refined
in the work on tracklets (Raptis and Soatto 2010) and DTFs
(Wang et al. 2011). IDTFs (Wang and Schmid 2013) cur-
rently provide state-of-the-art performance on video action
recognition (Jiang et al. 2014).

6.2 Representations Related to PoTs

In contrast to PoTs, most trajectory-based representations
treat each trajectory in isolation (Wang et al. 2011; Wang
and Schmid 2013; Messing et al. 2009; Matikainen et al.
2009; Raptis and Soatto 2010). Two exceptions are Jiang
et al. (2012) and Narayan and Ramakrishnan (2014). Jiang
et al. (2012) assign individual trajectories to a single code-
word from a predefined codebook (as in DTF works Wang
et al. 2011; Wang and Schmid 2013). However, the code-
words from a PoTs are combined into a ‘codeword pair’
augmented by coarse information about the relative motion
and average location of the two trajectories. Yet, this pairwise
analysis is cursory: the selection of codewords is unchanged
from the single-trajectory case, and the descriptor thus lacks
the fine-grained information about the relative motion of
the trajectories that PoTs provide. Narayan and Ramakr-
ishnan (2014) model Granger causality between trajectory
codewords. Their global descriptor only captures pairwise
statistics of codewords over a fixed-length temporal inter-
val. In contrast, a PoT groups two trajectories into a single
local feature, with a descriptor encoding their spatiotemporal
arrangement. Hence, PoTs can be used to find point corre-
spondences between different videos (Fig. 14).

The few remaining methods that propose pairwise repre-
sentations employ them in a very different context.
Matikainen et al. (2010) use spatial and temporal fea-
tures computed over pairs of sparse KLT trajectories to
construct a two-level codebook for action classification.
Dynamic-poselets (Wang et al. 2014) requires detailed man-
ual annotations of human skeletal structure on training data
to define a descriptor for pairs of connected joints. Raptis
et al. (2012) consider pairwise interactions between clusters
of trajectories, but their method also requires detailed man-

ual annotation for each action. None of these approaches is
suitable for unsupervised articulated motion discovery. If we
consider pairwise representations in still images, Leordeanu
et al. (2007) learned object classes by matching pairs of con-
tour points from one image to pairs in another. Yang et al.
(2010) computed statistics between local feature pairs for
food recognition, again in still images.

6.3 Unsupervised Behavior Discovery

To our knowledge, only Yang et al. (2013) considered the
task of unsupervised behavior discovery, albeit from manu-
ally trimmed videos. Their method models human actions in
terms ofmotion primitives discovered by clustering localized
optical flow vectors, normalized with respect to the dominant
translation of the object. In contrast, PoTs capture the com-
plex relationships between the motion of two different object
parts. Furthermore, we describe motion at a more informa-
tive temporal scale by using multi-frame trajectories instead
of two-frame optical flow. We compare experimentally to
Yang et al. (2013) on the KTH dataset (Schuldt et al. 2004)
in Sect. 7.2.

6.4 Spatial and Temporal Alignment

Most works on spatial alignment focus on aligning still
images for a variety of applications: multi-view reconstruc-
tion (Seitz et al. 2006), image stitching (Brown and Lowe
2007), and object instance recognition (Ferrari et al. 2006;
Lowe 2004). The traditional approach identifies candidate
matches using a local appearance descriptor (e.g., SIFTLowe
2004) with global geometric verification performed using
RANSAC (Fischler and Bolles 1981; Chum andMatas 2008)
or semi-local consistency checks (Schmid and Mohr 1996;
Ferrari et al. 2006; Jegou et al. 2008). PatchMatch (Barnes
et al. 2010) and SIFT Flow (Liu et al. 2008) generalize
this notion to match patches between semantically similar
scenes.

Our method differs from previous work on spatiotemporal
video sequence alignment (Caspi and Irani 2000; Caspi et al.
2006; Ukrainitz and Irani 2006) in several ways. First, we
find correspondences between different scenes, rather than
between different views of the same scene (Caspi and Irani
2000; Caspi et al. 2006), potentially at different times (Evan-
gelidis and Bauckhage 2013). While the method in Ukrainitz
and Irani (2006) is able to align actions across different scenes
by directly maximizing local space–time correlations, it can-
not handle the large intra-class appearance variations and
diverse camera motions present in our videos. As another
key difference, all above approaches require temporally pre-
segmented videos, i.e., they assume the two input videos
show the same sequence of events in the same order and
therefore can be aligned in their entirety. We instead oper-
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ate with no available temporal segmentation, which is why
we assume that only small portions of the videos can be
aligned (the CMPs). Under stricter assumptions, our method
can potentially align much longer sequences. Finally, these
works have been evaluated only qualitatively on 5–10 pairs of
sequences, whereas we provide extensive quantitative analy-
sis (Sect. 7.4).

Several approaches focus on finding the optimal temporal
alignment (i.e., frame-to-frame) between two or more video
sequences (Tuytelaars and van Gool 2004; Wang et al. 2014;
Douze et al. 2015; Dexter et al. 2009; Rao et al. 2003). Some
of these works use a cost matrix to find the alignment (Wang
et al. 2014;Dexter et al. 2009) similarly to ourCMPcandidate
extraction (Sect. 5.1). Also this class ofmethods assumes that
the input sequences can be aligned in their entirety, or at least
have a significant temporal overlap.

In the context of action recognition, there has been work
on matching spatiotemporal templates to actor silhouettes
(Gorelick et al. 2007; Yilmaz and Shah 2005) or groupings
of supervoxels (Ke et al. 2007). Our work is different because
we map pixels from one unstructured video to another. The
method in Jain et al. (2013) mines discriminative space–time
patches and matches them across videos. It focuses on rough
alignment using sparsematches (typically one patch per clip),
whereas we seek a finer, non-rigid spatial alignment. Other
works on sequence alignment focus on temporal rather than
spatial alignment (Rao et al. 2003) or target a very specific
application, such as aligning presentation slides to videos of
the corresponding lecture (Fan et al. 2011).

A few methods use TPS for non-rigid point match-
ing between still images (Chui and Rangarajan 2003),
and to match shape models to images (Ferrari et al.
2010). TPS were initially developed as a general purpose
smooth functional mapping for supervised learning (Wahba
1990). The computer graphics community recently pro-
posed semi-automated video morphing using TPS (Liao
et al. 2014). However, this method requires manual point
correspondences as input, and it matches image brightness
directly.

7 Experiments

7.1 Dataset

To evaluate our system, we assembled a new dataset of
video shots for three highly articulated classes: tigers (500
shots), horses (100) and dogs (100). The horse and dog shots
are primarily low-resolution footage filmed by amateurs
(YouTube), while the tiger shots come from high-resolution
National Geographic documentaries filmed by professionals.
This enables quantitative analysis on a large scale in two very
different settings.

We automatically partition each tiger video into shots
by thresholding color histogram differences in consecutive
frames (Kim and Kim 2009), and kept only shots showing
at least one tiger. Horse and dog shots are sourced from the
YouTube-objects dataset (Prest et al. 2012), where each shot
contains at least one instance.

We provide two levels of ground-truth annotations: behav-
ior labels to evaluate PoTs (Sect. 7.2) and the behavior
discovery stage (Sect. 7.3), and 2-D landmarks to evaluate
the spatial alignment stage (Sect. 7.4). We publicly released
this data at Del Pero et al. (2015b), where we also provide
foreground masks for each shot computed using Papazoglou
and Ferrari (2013).

Behavior labels. We annotated all the frames in the dataset
(110,000) with the behavior displayed by the animal, choos-
ing from the labels in Table 1. As animals move over time,
often a shot contains more than one label. Therefore, we
annotated each frame independently. When a frame shows
multiple behaviors, we chose the one that appears at the
larger scale (e.g., “walk” over “turn head”, “turn head” over
“blink”). If several animals are visible in the same frame, we
annotated the behavior of the one closest to the camera.

Landmarks. We annotated the 2-D location of 19 landmarks
(Fig. 12) in all the 16,000 frames of the horse class, and in
17,000 of the tiger class (Tiger_val, see below). For horses
we annotated: eyes (2), neck (1), chin (1), hooves (4), hips (4)
and knees (4). For tigers: eyes (2), neck (1), chin (1), ankles
(4), feet (4) and knees (4).We did not annotate occluded land-
marks. Unlike coarser annotations, such as bounding boxes,
landmarks enable evaluating the alignment of objects with
non-rigid parts with greater accuracy. Again, if several ani-
mals are visible in the same frame, we annotated the one
closest to the camera.

Tiger subsets. We now define three different subsets of
the tiger shots, which we use throughout the experiments.
Tiger_all denotes all tiger shots. Tiger_val contains 100
randomly selected shots used to set the parameters of the
methods we test. Tiger_fg contains 100 manually selected
shots in which the method of Papazoglou and Ferrari (2013)
produced accurate foreground masks (with no overlap with
Tiger_val). We use Tiger_fg to assess how sensitive the
methods are to the accuracy of the foreground masks. All
other subsets are instead representative of the average perfor-
mance of Papazoglou and Ferrari (2013) (which is accurate
on ∼55% of the cases).

7.2 Evaluation of PoTs

Wefirst evaluate PoTs (Sect. 3) in a simplified scenariowhere
we cluster intervals for which the correct single-behavior
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Fig. 12 Examples of annotated landmarks. A total of 19 points are
marked when visible in over 17,000 frames for two different classes
(horses and tigers). Our evaluation measure uses the landmarks to eval-
uate the quality of a sequence alignments (Sect. 7.4)

partitioning is given, i.e., we partition shots at frames where
the ground-truth behavior label changes. This allows us to
evaluate the PoT representation separately from our method
for automatic behavior discovery,which does the partitioning
automatically (Sect. 7.3).

7.2.1 Evaluation Protocol

We compare PoTs to the state-of-the-art IDTFs (Wang and
Schmid 2013). IDTFs combine four different feature chan-
nels aligned with dense trajectories: TS, HOGs, histogram
of optical flow (HOF), and MBH. TS is the channel most
related to PoTs, as it encodes the displacement of an indi-
vidual trajectory across consecutive frames. HOG is the only
component based on appearance and not on motion. We also
compare against a version of IDTFs where only trajectories
on the foreground masks are used, which we call fg-IDTFs.
We use the same point tracker (Wang and Schmid 2013) to
extract both IDTFs and PoTs. For PoTs, we do not remove
trajectories that are static or are caused by the motion of
the camera. Removing these trajectories improves the per-
formances of IDTFs (Wang and Schmid 2013), but in our
case they are useful as potential anchors.

We adopt two criteria commonly used for evaluating clus-
tering methods: purity and adjusted rand index (ARI; Rand
1971). Purity is the number of items correctly clustered
divided by the total number of items (an item is correctly
clustered if its label coincides with the most frequent label in
its cluster). While purity is easy to interpret, it only penalizes
assigning two items with different labels to the same cluster.
The ARI instead also penalizes putting two items with the
same label in different clusters. Further, it is adjusted such
that a random clustering will score close to 0. It is considered
a better way to evaluate clustering methods by the statistics
community (Hubert and Arabie 1985; Santos and Embrechts
2009).

Parameter setting. We use Tiger_val to set the PoT selection
threshold θP (Sect. 3.2) and the PoT codebook size V (Sect.
4.2) using coarse grid search. As objective function, we used
the ARI achieved by our methodwhen the number of clusters

is equal to the true number of behaviors. We used interval
[0.05, 0.35] with a step of 0.05 for θP , and [800, 8000] with
a step of 800 for V .Grid search selects θP = 0.15, V = 800
and we use these values in all experiments on all classes.
In practice, performance is very similar for a wide range of
parameters: 0.1 ≤ θP ≤ 0.25 and 800 ≤ V ≤ 1600. We
tuned the IDTFs codebook size analogously and found that
4000 codewords work best. Interestingly, the same value is
chosen by Wang and Schmid (2013) on completely different
data.

7.2.2 Results

We compare clustering using BoWs of PoTs to using BoWs
of IDTFs in Fig. 13a–h. As the true number of clusters is
usually not known a priori, each plot shows performance as
a function of the number of clusters. The mid value on the
horizontal axis corresponds to the true number of behaviors
(23 for tigers, 17 for horses, 15 for dogs).

For tigers and horses, the clusters found using PoTs are
better in both purity and ARI, compared to using IDTFs
(Fig. 13a–d). Consider now the individual IDTFs channels.
On tigers, the HOG channel performs poorly, and adding it
to PoTs (PoTs + HOG) performs worse than PoTs alone.
Appearance is in general not suitable for distinguishing
between fine-grained behaviors. It is particularly mislead-
ing when different object instances have similar color and
texture (like tigers). The HOF and MBH channels of IDTF
perform poorly on their own and are not shown in the plot.

The gain over IDTFs is larger on Tiger_fg (g, h), where
PoTs benefit from the accurate foregroundmasks.Here, PoTs
also outperform fg-IDTFs, showing that the power of our rep-
resentation resides in the principled use of PoTs, not just in
exploiting foreground masks to remove background trajec-
tories. Moreover, all other results (a–f) show that PoTs can
also cope with imperfect masks.

For the dog class, IDTFs perform better than PoTs (Fig.
13e, f). However, HOG is doingmost of the work in this case.
The dog shots come from only eight different videos, each
showing one particular dog performing one–two behaviors
in the same scene. Hence, HOG performs well by trivially
clustering together intervals from the same video. When we
equip PoTs with HOG, they outperform the complete IDTFs.
Additionally, if we consider trajectory motion alone PoTs
outperform TS, further confirming that PoTs are a more suit-
able representation for articulated motion.

Results on tigers and horses showed that adding appear-
ance features can be detrimental, since there is little corre-
lation between a behavior and the appearance of the animal
and/or the background. This is not the case for the dog class,
where the shots come from only 8 different scenes, compared
to more than 50 for horses, and several hundreds for tigers.
However, it shows that PoTs and appearance features are
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Fig. 13 Results of clustering intervals usingdifferent descriptors (Sect.
7.2.2), evaluated on adjusted rand index (ARI) and purity (Sect. 7.2.1).
PoTs result in better clusters than IDTFs (Wang and Schmid 2013) on
tigers and horses (a–d). Adding appearance (PoTs + HOG) is detri-
mental on these two classes, but improves performance on dogs (e, f).
IDTFs perform well for dogs, primarily due to the contribution of the
HOG channel: compare the full descriptor (blue), with the HOG chan-

nel only (black) and the trajectory shape channel TS (magenta). For all
classes, PoTs + HOG performs better than IDTFs. The gap between
IDTFs and PoTs increases on tiger_fg, where we ensured the segmen-
tation is accurate (g, h). Here, PoTs also outperform IDTFs extracted
on the foreground mask only (fg-IDTFs). PoTs also generate higher-
quality clusters than the other methods when we cluster automatically
partitioned intervals (i–l, Sect. 7.3) (Color figure online)

complementary: when appearance should be beneficial, we
see the expected performance boost by adding this additional
information. This is potentially useful for traditional action
recognition tasks (Soomro et al. 2012; Karpathy et al. 2014),
wheremany activities strongly correlate with the background
and the apparel involved (e.g., diving can be recognized from
the appearance of swimsuits, or a diving board with a pool
below). Last, we note that we use the same PoT parameters
on all datasets (set on Tiger_val, Sect. 7.2.1), showing that
our representation generalizes across classes.

Comparison to motion primitives (Yang et al. 2013) last,
we compare to the method of Yang et al. (2013), which is
based on motion primitives (Sect. 6.3). Since they did not
release their method, we compare to the results they report
on the KTH dataset (Schuldt et al. 2004) in their setting.
The KTH dataset contains 100 shots for each of 6 different
human actions (e.g., walking, hand clapping). As before, we

cluster all shots using the PoT representation: for the true
number of clusters (6), we achieve 59% purity, compared to
their 38% (Fig. 9 in Yang et al. 2013). For this experiment,
we incorporated an R-CNN person detector (Girshick et al.
2014) into Papazoglou and Ferrari (2013) to better segment
the actors.

7.3 Evaluation of Behavior Discovery

We first evaluate our method for partitioning shots into
single-behavior intervals (Sect. 4.1). Let the uniformity of
an interval be the number of frames with the most frequent
label in it, divided by the total number of frames. The com-
bination of pauses and periodicity partitioning improves the
baseline average interval uniformity of the original, unpar-
titioned shots (Table 2). This is very promising, since the
average uniformity is near 90%, and the number of intervals
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Table 2 Interval uniformity for
different partitioning methods

Whole shots Pauses Pauses + periods Ground truth

Tiger # intervals 480 719 885 1026

Tiger uniformity 0.78 0.85 0.87 1

Horse # intervals 96 117 184 194

Horse uniformity 0.82 0.83 0.89 1

Dog # intervals 80 115 219 260

Dog uniformity 0.72 0.80 0.88 1

Bold values indicate best performance
Pauses + periods consistently outperforms alternatives (Sect. 7.3)

Fig. 14 Behaviors discovered by clustering consistent motion patterns
(Sect. 7.3). Each red rectangle displays a few pairs of intervals from
one cluster, on which we connect the anchors (yellow) and swings (red)
of two individual PoTs that are close in descriptor space. The enlarged
version show how the connected PoTs evolve through time, and give

a snapshot of one representative motion pattern for each cluster. The
behaviors shown are: two different ways of walking (a, b), sitting down
(c), running (d), and turning head (e). Video showing behavior clusters
for all classes are available on our website (Del Pero et al. 2015b) (Color
figure online)

found approaches the ground-truth number. In Table 1 we
report the number of single-behavior intervals found by each
method, grouped by behavior. We only increase the count for
intervals from different shots, otherwise we could approach
the ground-truth number by simply partitioning one contin-
uous behavior into smaller and smaller pieces (e.g., if our
method returns three intervals from the same shot whose
ground-truth label is “walking”, we increase the count for
“walking” in Table 2 only by one). We chose this count-
ing method because our ultimate goal is to find instances of
the same behavior performed by different object instances.
Clustering whole shots would lose many behaviors, and
only a few dominant ones such as walking would emerge.
Our method instead finds intervals for almost all behavior
types.

Last, we report purity and ARI for the clusters of par-
titioned intervals (Fig. 13i–l). As ground-truth label for a
partitioned interval, we use the ground-truth label of the
majority of the frames in it. PoTs outperform IDTFs on
tigers and horses also in this setting. To make this compar-

ison fair, we evaluate IDTFs and PoTs after using the same
partitioning method (pauses + periodicity). We show a few
qualitative examples of the discovered behavior clusters in
Fig. 14.

7.4 Evaluation of Sequence Alignment

The input of this experiment are the clusters of intervals dis-
covered by our method (step 3 in Fig. 2). We set the number
of clusters to be a fourth of the number of intervals in step
2. With this settings, the purity of the discovered clusters
is above 0.7 (CMP extraction in step 4 benefits from having
reasonably pure clusters as input). For the tiger class we only
cluster the intervals in Tiger_val, since this is the only sub-
set of the tiger class with landmark annotations (we use all
intervals for horses).

We now introduce an alignment error measure (Sect.
7.4.1), whichwe use to evaluate CMP extraction (Sect. 7.4.2)
and alignment (Sect. 7.4.3).
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Fig. 15 Alignment error. We use the ground-truth landmarks to mea-
sure the alignment error of the mappings estimated by our method
(Sect. 7.4.1). As the error increases, the quality of the alignment clearly
degrades. Around 0.18 the alignments contain some slight mistakes
(e.g., the slightly misaligned legs in the top right image), but are typ-
ically acceptable. We consider an alignment incorrect when the error
is above 0.18, and also when the IOU of the visible landmarks in the
aligned pair is below 0.5 (bottom row)

7.4.1 Alignment Error

We evaluate the mapping found between the two sequences
in a CMP as follows. For each frame, we map each land-
mark in the first sequence onto the second and compute the
Euclidean distance to its ground-truth location. The error for
the landmark is the average between this distance and the
reverse (i.e., when we map the landmark from the second
sequence into the first). We normalize the error by the scale
of the object, defined as the maximum distance between any
two landmarks in the frame. The overall alignment error is
the average error of all visible landmarks over all frames.

After visual inspection of many sampled alignments (Fig.
15), we found that 0.18 was a reasonable threshold for sep-
arating acceptable alignments from those with noticeable
errors. We count an alignment as correct if the error is below
this threshold and if the intersection-over-union (IOU) of the
two sets of visible landmarks in the sequences is above 0.5.3

This prevents rewarding accidental alignments of a few land-
marks (bottom row of Fig. 15).

7.4.2 Results on CMP Extraction

First, we evaluate ourmethod for CMP extraction in isolation
(Sect. 5.1). Given a CMP, we fit a homography to correspon-
dences between the ground-truth landmarks, and check if it
is correct based on the alignment error above. This indicates

3 If L1 is the set of landmarks visible in the first sequence in a CMP,
and L2 those in the second, IOU(L1, L2) = |L1 ∩ L2|/|L1 ∪ L2|. For
example, if L1={left_eye,right_eye,neck} and L2={front_right_knee,
right_shoulder, neck}, IOU=1/5.

that it is possible to align the CMP (we call it alignable).
Computing (5) using both PoTs and MBH returns roughly
3000 CMP on tigers, of which 51% are alignable (43% if
we use only PoTs). As a baseline, we extract CMPs directly
from the input shots: we select the starting frames of the two
sequences in a CMP by sampling from a uniform distribution
over all input frames (i.e., without steps 2 and 3 in Fig. 2). The
percentage of alignable CMPs produced by this baseline is
only 19%.Results are similar on horses: our method delivers
49% alignable CMPs (47% using only PoTs), versus 26%
by the baseline.

7.4.3 Results on Spatial Alignment

Wenow evaluate ourmethods for sequence alignment (Sects.
5.2, 5.3). For each, we generate a precision–recall curve as
follows. Let n be the total number of CMPs returned by
the method, c the number of correctly aligned CMPs, and
a the total number of alignable CMPs (Sect. 7.4.2). Recall is
c/a, and precision is c/n. Different operating points on the
precision–recall curve are obtained by varying the maximum
percentage of outliers allowed when fitting a homography.

Baselineswe compare ourmethod against SIFT Flow (Liu
et al. 2008). We use SIFT Flow to align each pair of frames
from the two CMP sequences independently. We help the
SIFT Flow algorithm by matching only the bounding boxes
of the foreground masks, after rescaling them to be the same
size. Without these two steps, the algorithm fails on most
CMPs.

We also compare to fitting a homography to SIFTmatches
between the two sequences. We use only keypoints on the
foreground mask, and preserve temporal order by match-
ing only keypoints in corresponding frames. We tested this
method alone (SIFT), and by adding spatial regularization
with the foreground masks (SIFT + FG, as in Sect. 5.2.3).
Finally, we consider a simple baseline that fits a homogra-
phy to the bounding boxes of the foreground masks alone
(FG).

We report results in Fig. 16. Among the homography-
based methods (Sect. 5.2), those using trajectory correspon-
dences (TM, IM, Sect. 5.2.2) are superior to using SIFT on
both classes, with TMoutperforming IM.Adding spatial reg-
ularization with the foreground masks (+FG) improves the
performance of both TM and SIFT. SIFT performs poorly
on tigers, since the striped texture confuses matching SIFT
keypoints (Fig. 17, bottom).Methods using trajectories work
somewhat better on tigers than horses due to the poorer qual-
ity of YouTube video (e.g., low resolution, shaky camera,
abrupt pans). As a consequence, TM + FG clearly outper-
forms SIFT + FG on tigers, but it is somewhat worse on
horses.

The TTPS model (TTPS + FG, Sect. 5.3) significantly
improves upon its initialization (TM + FG) on both classes.
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Fig. 16 Evaluation of sequence alignment. We separately evaluate
our method on two classes, horses and tigers (Sect. 7.4.3). With no
regularization, trajectory methods are superior to SIFT on both classes,
with TM performing better than IM. Adding regularization using
the foreground masks (+FG) improves the performance of both TM
and SIFT (compare the dashed to the solid curves). TTPS clearly
outperform all trajectory methods, as well as SIFT Flow and the FG
baseline (Sect. 7.4.3)

On tigers, it is the best method overall, as its performance
curve is above all others for the entire range. On horses, the
SIFT + FG and TTPS + FG curves intersect. However, TTPS
+ FG achieves a higher average precision (i.e., the area under
the curve): 0.265 versus. 0.235.

The SIFTFlow software (Liu et al. 2008) does not produce
scores comparable across CMPs, so we cannot produce a full
precision–recall curve. At the level of recall of SIFT Flow,
TTPS+FGachieves +0.2 higher precision on tigers, and+0.3
on horses. We also note that TM and TM + FG are closely
related to the method for fitting homographies to trajectories
inCaspi et al. (2006).AlthoughTM+FGextends (Caspi et al.
2006) in several ways (automatic CMP extraction, modified
TS descriptor, regularization with foreground masks), it is
still inferior to TTPS + FG. Last, TTPS + FG also achieves
a significantly higher precision than the FG baseline. This
shows that our method is robust to errors in the foreground
masks (Fig. 17, top). Head-to-head qualitative results show
that TTPS+FGalignments typically lookmore accurate than
the other methods (Fig. 18). A video with many examples is
available on our website (Del Pero et al. 2015b).

For the tiger class, out of all CMPs returned by TTPS +
FG (rightmost point on the curve), 1000 of them are correctly
aligned (i.e., 10,000 frames). The precision at this point is 0.5,
i.e., half of the returned CMPs are correctly aligned. For the
horse class, TTPS + FG returns 800 correctly aligned CMPs,
with precision 0.35.

7.5 Runtime

We report the run-time of the main steps of our method in
Table 3, including pre-processing. We measured run-time
on a Dell server with a 1.6 GHz CPU and 16 GB RAM.
The PoT extraction time is negligible compared to the pre-
processing steps (optical flow, foreground mask and dense
trajectory extraction). We note that large video collections

Fig. 17 Top two rows: estimating the homography from the foreground
masks alone (FG) fails when the bounding boxes are not tight around
the objects (first–second columns). Adding trajectories (TM + FG) is
more accurate (Sect. 5.2.3). Bottom two rows: the striped texture of
tigers often confuses estimating the homography from SIFT keypoint
matches (third column). On this class, using trajectories (TM) often
performs better (Sect. 7.4.3)

(a) (b) (c) (d)

Fig. 18 Given two input sequences of articulated objects (a, b), TTPS
often provide amore accurate alignment (d) than homographies (c, Sect.
7.4.3)

can be processed efficiently on a computer cluster, since each
input shot (or CMP for the alignment) can be processed inde-
pendently.

7.6 Analysis of Failures and Limitations

Inaccurate foreground masks. Our system is robust to small
to medium inaccuracies in the foreground masks, such as
missing part of the object or including some of the back-
ground (see Sect. 4.2 and Fig. 11). However, we cannot cope
with catastrophic failures, for example when the object is
completely missed. In these cases the PoT extraction is not
reliable, which results in assigning such shots to the wrong
behavior cluster (Fig. 19), which in turn produces wrong
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alignments in the following step of our system. However,
these problematic cases are not frequent (about 15% of the
input shots). Moreover, we noticed that hierarchical clus-
tering often puts such an item in a singleton cluster, which
mitigates the problem. Inaccuracies in the masks can poten-
tially be detected and fixed by co-segmenting all the intervals
in a behavior cluster, while enforcing consistent appearance
and shape across all their foreground masks.

Scale and viewpoint invariance. The PoT descriptor is invari-
ant to scale (Sect. 3.1). In general, smaller objects will
generate fewer trajectories (hence fewer PoTs), but this is
not a problem since we aggregate the PoTs into a normal-
ized BOW histogram (Sect. 4.2). Our results show that our
method clusters together objects at a very different scale
(e.g., Fig. 14b). Only cases where the object is very small
are problematic (<50 × 50 pixels). PoTs are also robust to
moderate viewpoint and pose variations. However, they can-
not cope with drastic viewpoint difference, e.g., a video of a
tiger walking frontally and one walking to the right. Estab-
lishing correspondences between clusters showing the same
behavior under widely different viewpoints is an interesting
research direction.

Camera motion. The PoT descriptor can cope with camera
panning, and other moderate cameramotions (Sect. 3.1). The
foreground masks also help in the presence of panning, since
the motion of rigid regions of the object and the background
would be indistinguishable in this case. However, fast zoom-
ing can be problematic.

Extensions to multiple classes. The main goal of our system
is to organize a collection of videos of the same class. How-
ever, extensions to multiple classes are possible. In the case
of related classes (e.g., quadrupeds), similar behaviors of dif-
ferent classes might be grouped together, and additional cues
might be needed to separate them.

8 Discussion

We introduced a weakly supervised system that discovers the
behaviors of an articulated object class from unconstrained

Fig. 19 Failures due to inaccurate foreground mask. Our system is
robust to inaccuracies in the foreground masks (Sect. 4.2 and Fig. 11),
but cannot recover when the object is almost completely missed (left).
Here the walking tiger (left) was clustered with the tiger sitting down
(right) during behavior discovery (Sect. 4.2). This in turn breaks the
alignment stage, as these two tigers cannot be aligned via homography
or TTPS (Sect. 5). We estimated by visual inspection that complete fail-
ures in the masks happen in roughly 15% of the input shots (Sect. 7.6)

video, while also spatially aligning several instances of each
behavior. We emphasize that the only supervision needed is
a single label per video, indicating which class it contains.

The entire system is bottom-up and needs not relate to
the kinematic structure of an object class. We showed that
the behavior discovery and the alignment process apply to
different classes, by leveraging the recurring motion patterns
of a particular class, rather than being limited to pre-defined
relationships.

This was enabled by our PoT descriptor, which proves
very effective for modeling the motion of articulated objects.
Thanks to the use of PoTs, PoTs outperform alternative
motion descriptors (e.g., TS) on behavior discovery. While
being appearance-free, on horses and tigers PoTs also out-
perform all tested alternatives that included appearance
information (e.g., IDTFs).When augmentedwith appearance
descriptors, PoTs also outperforms competitors on the dog
class. In terms of spatial alignment, we have shown that our
technique produces more accurate alignments than relevant
alternatives such as SIFT Flow and SIFT matching.

Thanks to the principled use of motion, we discovered
behaviors and recovered alignments across instances exhibit-
ing significant appearance variations (orange and white
tigers, cubs and adults, etc.). Establishing such correspon-
dences across different object instances can be very useful
to learn class-level models of behavior and/or appearance.
Ourmethod recovers them automatically fromunconstrained
Internet video, and can be a platform for replacing the tedious
and expensive manual annotations normally needed when
learning from video.

Table 3 Run-time of the main
steps of our method (Sect. 7.5)

Steps Run-time (s)

Optical flow (Brox and Malik 2011, per frame) 1.5

Foreground mask (per frame) 0.5

Dense trajectory extraction (per frame) 0.4

PoT extraction (per frame) 0.1

Homography alignment (per CMP) 5

TTPS alignment (per CMP) 44
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