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Abstract. Textures can often more easily be described as a composition of 

subtextures than as a single texture. The paper proposes a way to model and 

synthesize such “composite textures”, where the layout of the different 

subtextures is itself modeled as a texture, which can be generated automatically. 

Examples are shown for building materials with an intricate structure and for 

the automatic creation of landscape textures. First, a model of the composite 

texture is generated. This procedure comprises manual or unsupervised texture 

segmentation to learn the spatial layout of the composite texture and the 

extraction of models for each of the subtextures. Synthesis of a composite 

texture includes the generation of a layout texture, which is subsequently filled 

in with the appropriate subtextures. This scheme is refined further by also 

including interactions between neighboring subtextures. 

1 Composite Textures, Divide and Conquer 

Natural textures can be of a very high complexity, which renders them difficult to 

emulate by texture synthesis methods. Many of such textures consist of patches, 

which in turn contain patterns of their own. Good examples are the textures of 

building materials like marbles or limestones, or the textures of different landscape 
types. A countryside texture could, e.g. be a mixture of meadows and forests. We will 

refer to such textures as composite textures. Whereas the patterns within the patches 

may already be homogeneous enough to be modeled and synthesized successfully 

with existing techniques, modeling and synthesizing the mixture directly tends to be 

less effective. It therefore stands to reason to divide the synthesis of composite 

textures into several steps: 
1. Segment (by hand or otherwise) example image(s) of the composite texture to be 

modeled, where each class is given its own label. 

2. Consider the resulting label map (with labels assigned to all pixels) as a texture 

and extract a model for it. 

3. Also extract models for the textures corresponding to the different labels (i.e. the 

different classes/segments). 
4. Generate a synthetic label map, based on the model of step 2. 

5. Fill in the segments generated under step 4 with textures according to their labels, 



based on the models of step 3. 

This scheme tallies with ideas about “macrotextures” vs. “microtextures” that have 

emerged as soon as texture research started in computer vision. The label map can be 

considered a macrotexture, whereas the textures within the segments of constant label 

values would be microtextures. In this paper, we will refer to the macrotextures as 
“label textures”, and to the microtextures as “subtextures”. 

Although such ideas have been around for quite a while, it seems that so far such 

hierarchical approach has not really been implemented for textures of a strong 

stochastic nature. When ideas about hierarchical analysis are used, it is usually in the 

context of multi-resolution schemes, which have contributed greatly to the state-of-

the-art in texture synthesis (see e.g. [2, 7] as seminal examples). Contributions that 
come closest to the work presented here have used label textures that were hand-

drawn by the user and the corresponding textures were then filled in with texture 

either by “smart copying” from example [8] or by synthesis techniques [13]. 

The composite texture approach as just described does not include mutual 

influences between the subtextures. It is not exceptional that the subtextures are not 

completely stationary within their domains. In particular, regularly a kind of transition 
zone is found near their boundaries. These changes may well depend on the texture on 

the other side of the boundary. Later in the paper we will modify the composite 

texture scheme to include such effects. 

The remainder of the paper is organized as follows. Section 2 describes the texture 

synthesis approach used to generate the label textures and the subtextures. Section 3 
shows some results for the synthesis of composite textures. Section 4 describes the 

inclusion of subtexture interactions (nonstationary aspects). Section 5 concludes the 

paper. 

2 Image-Based Texture Synthesis 

This section describes the approach that we use to synthesize the textures, i.e. both the 

label textures and the subtextures. More information about this texture modeling and 

synthesis approach can be found in [13]. It follows the cooccurrence paradigm in that 

texture is synthesized as to mimic the pairwise statistics of the example texture. This 

means that the joint probabilities of the intensities at pixel pairs with a fixed relative 
position are approximated. Such pairs will be referred to as cliques, and pairs of the 

same type (same relative position between the pixels) as clique types. This is 

illustrated in Fig. 1. 

 

 

 

 

Fig. 1. Dots represent pixels. Pixels connected by lines represent cliques. Left: cliques of the 

same type, right: cliques of different types. 

The texture model consists of statistics for a selected set of clique types. Clique 

type selection follows an iterative approach, where clique types are added one by one 



to the texture model, a texture synthesized based on the model is each time updated 

accordingly, and the statistical difference between the example texture and the 

synthesized texture is analyzed to decide which further clique type addition to make. 

The set of selected clique types is called the neighborhood system. The complete 

texture model consists of this neighborhood system and the statistical parameter set. 
The latter contains the histograms of intensity differences between the two pixels of 

all cliques of the same type. 

A sketch of the texture model extraction algorithm is as follows: 

step 1: Collect the complete 2nd-order statistics for the example texture, i.e. the 

statistics of all clique types. After this step the example texture is no longer 

needed. As a matter of fact, the current implementation focuses on clique 
types up to a maximal length. 

step 2: Generate an image filled with independent noise and with values uniformly 

distributed in the range of the example texture. This noise image serves as the 

initial synthesized texture, to be refined in subsequent steps. 

step 3: Collect the statistics for all clique types from the current synthesized image. 

step 4: For each clique type, compare the intensity difference histograms of the 
example texture and the synthesized texture and calculate their Euclidean 

distance. In fact, the intensity histograms pure (singletons) are considered as 

well. 

step 5: Select the clique type with the maximal distance (see step 4). If this distance is 

less than a threshold, then leave the algorithm with the current model. 
Otherwise add the clique type to the current (initially empty) neighborhood 

system and all its statistical characteristics to the current (initially empty) 

statistical parameter set. 

step 6: Synthesize a new texture using the updated neighborhood system and texture 

parameter set. 

step 7: Go to step 3. 

After running this algorithm we have the final neighborhood system of the texture 

and its statistical parameter set. A more detailed description of this texture modeling 

approach is given elsewhere [13]. In that paper it is also explained how the synthesis 

step works and how we generalize this texture modeling to colored textures. 

The proposed algorithm produces texture models that are very small compared to 

the complete 2nd-order statistics extracted in step 1 and also compared to the example 
image. Typically only 10 to 40 clique types are included and the model amounts from 

a few hundred to a few thousand bytes. Another advantage is that the method avoids 

verbatim copying of parts of the example images. This is an advantage that it shares 

with similar approaches [5, 6, 9, 12]. Verbatim copying becomes particularly salient 

when large patches of texture need to be created, e.g. when covering a large wall with 

a marble texture. Then the repeated appearance of the same structures quickly 
becomes salient to the human eye. For the texture mapping on such large surfaces this 

problem is more serious than may transpire from state-of-the-art publications that 

suffer from this problem (e.g. [3, 11]), as the extent of the textures that can be shown 

in papers is rather small. 

The basic texture synthesis approach described in this section can handle quite 



broad classes of textures. Nevertheless, it has problems with the composite type of 

textures considered here. Comparisons between single and composite texture 

synthesis results will be shown later. 

3 The Segmentation of Composite Textures 

The steps of the composite texture modeling scheme proposed in section 1 are 

illustrated on the basis of a few examples. Fig. 2 shows a modern “thorn-cushion 

steppe” type of landscape (left). It consists of several ground cover types, like “rock”, 

“green bush”, “sand”, etc., for which the corresponding segments are drawn in the 
figure on the right. 

  

Fig. 2. Left: an example of “thorn-cushion steppe”, Right: manual segmentation into basic 

ground cover types (also see Fig. 4). 

If one were to directly model this composite ground cover as a single texture, the 

basic texture analysis and synthesis algorithm proposed in the last section would not 
be able to capture all the complexity in such a scene. Fig. 3 shows the result of such 

synthesis. 

 

Fig. 3. Attempt to directly model the scene in Fig. 2 as a single texture. 

In keeping with the composite texture scheme of section 1, an example image like 

this is first decomposed into different subtextures, as shown in Fig. 2 (right). The 

segments that correspond with different subtextures have been given the same 



intensity (i.e. the same label). This segmentation has been done manually. Fig. 4 

shows the image patterns corresponding to the different segments. 

The textures within the different segments are simple enough to be handled by the 

basic algorithm. Hence, in this case 6 subtexture models are created, one for each of 

the ground cover types (see caption of Fig. 4). But also the map with segment labels 
(Fig. 2 right image) can again be considered to be a texture, describing a typical 

landscape layout in this case. This label texture is quite simple again, and can be 

modeled by the basic algorithm of section 2. Hence, similar label textures can be 

generated automatically as well. The synthesis of this composite texture first 

generates a landscape layout as a label texture. Subsequently, the different segments 

are filled in with the corresponding subtextures, based on their models. As an 
alternative, a graphical designer or artist can draw the layout, after which the 

computer fills in the subtextures in the segments that s/he has defined, according to 

their labels. Fig. 5 shows one example for both procedures. 

  

Fig. 4. Manual segmentation of the terrain texture shown in Fig. 2. Left: segments 

corresponding to 1-green bush, 2-rock, 3-grass, 4-sand, 5-yellow bush. Right: left-over regions 

are grouped into an additional mixed class. 

 

 

Fig. 5. Synthetically generated landscape textures. Left: based on a manually drawn label 

texture. Right: based on an automatically generated label texture. 



Note that except for the hand segmentation of the label texture in Fig. 2, the right 

image has been created fully automatically and arbitrary amounts of such texture can 

be generated, enough to cover a terrain model with never-repeating, yet detailed 

texture. As mentioned before, the fact that this approach doesn’t use verbatim copying 

of parts in the example images has the advantage that no disturbing repetitions are 
created. 

A complete automation of the composite texture scheme would have to include an 

initial, unsupervised segmentation of the scene, so that no hand segmented label 

texture is needed. Such unsupervised segmentation is not an easy matter of course, but 

in certain cases may nevertheless be possible. As Paget [10] noticed, the optimal 

complexity of texture models for segmentation is typically lower than that required 
for synthesis. This can be key to avoiding a chicken-and-egg situation with such fully 

automated process. In case the features needed for the segmentation were of the same 

complexity as the models that we extract from segmented data, the whole procedure 

can no longer run automatically. 

Fig. 6 left shows two images that could be segmented automatically. As a matter of 

fact, truly textural features were not needed at all in this case. Segmentation based on 
Lab color data was sufficient. The data around each pixel were smoothed with a 

Gaussian filter of size 5x5. Each pixel is described by a three dimensional color 

feature vector. For more general case, an additional vector is built of simple texture 

features, obtained as the outputs of a bank of simple filters. A cosine metric between 

such feature vectors is used as similarity measure between pairs of pixels 
(Bhattacharyya distance). A sample pixel set is drawn from the image and a complete 

graph is constructed where vertices correspond to pixels and edges are weighted by 

the similarity measure. The graph is then partitioned into completely connected, 

disjoint subsets of vertices so as to maximize the total sum of the similarities over all 

remaining edges. These subsets are also referred to as “cliques”, but this time in the 

graph theoretical sense. The pixels in each subset now represents a subtexture. This 
robust segmentation procedure is efficiently obtained via the Clique Partitioning 

approximation algorithm of [4]. It is worth noting that the algorithm is completely 

unsupervised: it doesn’t need to know the number of subtexture classes, their size, or 

any information other than the image data itself. The segmentation results for the two 

images are shown in Fig. 6 right. A more detailed description of the unsupervised 

segmentation scheme is given elsewhere [1]. 
Fig. 7 shows the result of a fully automatic composite texture synthesis for the top 

texture of Fig. 6. No user input whatsoever was needed to generate this result. Fig. 7 

right is the label texture that was generated. 

Automatic segmentation of a composite texture will not always be possible or even 

desirable. Fig. 8 shows one of the more complicated types of limestones that was used 

as building material at the ancient city of Sagalassos in Turkey, now a center of 
intensive archaeological excavations. If one wants to recreate the original appearance 

of the buildings, such textures need to be shown with all their complexities and 

subtleties, but without the effects of erosion. Fig. 8 (a) shows an example image of 

this limestone (pink-gray breccia), which has a kind of patchy structure and where 

several darker cracks and pits are the result of century long erosion. 
First, the original limestone image was manually segmented, whereupon texture 

models were generated for the different parts, making sure that those parts left out 



erosion effects. An automatically generated, synthetic result is shown in (c). To 

simulate the visual effect of erosion, simple thresholding of the image (a) yielded the 

erosion related cracks and pits. These dark areas were then superimposed on texture 

(c), yielding (d). As can be seen the visual appearance of this texture comes close to 

that of (a). It is texture (c), however, that is the desired output for this application. 
This is a case were manual segmentation and user assisted subtexture modeling is 

hard to avoid. 

  
  

  

Fig. 6. Left: landscape images. Right: unsupervised segmentation. 



4 Interactions between Subtextures 

The subtextures are not always sharply delineated and may not be stationary within 

their patches. It is quite usual that neighboring subtextures exhibit a mutual influence 

near their boundaries. The observed nonstationary behavior near the subtexture 
boundaries may therefore well depend on the specific subtexture on the other side. 

Such effects have been included in a refined version of the composite texture model. 

The “upgraded” model includes additional cliques, where head and tail pixels 

correspond to different subtextures. For all pairs of subtextures that come within a 

user-specified distance of each other, a separate neighborhood system and statistical 

parameter set are derived. These are characterized by the fact that the two pixels of a 
clique (we call them “head” and “tail”) fall within a different subtexture. Note that the 

interactions impose a strict order on their cliques: the head lying in a first subtexture 

and the tail in a second has to be distinguished from the reverse situation. Fig. 9 

illustrates the three types of cliques that are relevant as soon as subtexture interactions 

are taken account of. 

  

Fig. 7. Fully automatic composite texture synthesis of the top texture in Fig. 6. Right: the 

automatically generated label map modeled as a label texture from the unsupervised 

segmentation in Fig. 6 top-right. 

Currently, in the upgraded approach the subtextures are synthesized in order of 

“complexity”. So far, we have only used simple criteria like entropy of the color 

histogram as complexity measures. We start the synthesis with the simplest texture. 

The rationale is that in this way those textures that need the least information are 
synthesized first. By the time more complex textures are to be synthesized, the 

simpler ones are already in place and can assist in this synthesis. Suppose we are 

about to analyze the interactions of texture n in this sequence. We can include the real 

intensity difference histograms into the model for those textures that come earlier in 

the sequence, because they will already have been synthesized by the time texture n 

is. For the interactions with textures further down the line, the intensity differences 



between the real intensities within texture n and 0 outside are taken, as at the time of 

synthesis the system will find the initialized values 0 there. This in fact corresponds to 

simply taking the intensity histogram for points of texture n within the relative 

positions to the neighboring texture that are prescribed by the clique type. Work to 

synthesize all subtextures simultaneously instead of sequentially as described here is 
under way. Hence, we are not too concerned with the generality of our texture 

complexity ranking procedure, as it will become obsolete once simultaneous synthesis 

is in place. Simultaneous synthesis should be superior as all subtexture interactions 

are considered. 

  
(a) example image of a limestone (b) synthesized as a single texture 

  
(c) synthesized as a composite texture, 

omitting the effects of erosion 
(d) synthesis like in (c) but with erosion 

added as the darker parts of (a) 

Fig. 8. Results for the synthesis of a limestone texture. 
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Fig. 9. The cliques (1,2), (2,2), and (2,1) are of different types despite of their equal relative 

position of head and tail. The arrows show the direction of the interaction for this specific 

sequence of subtexture modeling. 

Fig. 10 shows an example image of a limestone texture. Figure (b) is the result of 

unsupervised segmentation. The result consists of only two subtextures in this case, 

consisting of the dark and bright areas, respectively. The dark areas were considered 

“simpler” by the upgraded approach and it therefore dealt with them first. The 

difference between the composite texture approach of section 1 and the upgraded 
approach doesn’t lie in the label texture as its generation in both cases is identical. In 

order to best compare the results of the original and the upgraded approach we 

therefore take the example label texture of (b) as our label texture for subtexture 

synthesis. Fig. 10 (d) shows the result with the approach of section 1, (c) with the 

upgraded approach. As can be seen, the upgraded version looks more natural. In the 
example image the edges between the two subtextures are less sharp than in (d). Near 

either side of the border the intensities tend to get more similar. A good example is 

the white spot at the top. The spatial distribution of white and gray pixels in such spot 

in image (c) is better than that of (d). 

Fig. 11 (a) gives the result of the upgraded approach for the top texture of Fig. 6. 

The label texture of Fig. 7 right was reused. As can be seen (cf. independent 
subtexture synthesis Fig. 11 (b) repeated here for comparison), the quality of this 

texture is better. Fig. 12 (a) gives the result for the bottom texture in Fig. 6. In this 

case the quality of the texture synthesized without subtextures’ interactions (not 

shown) is more comparable. 

Fig. 13 illustrates the use of the composite textures for virtual reality. Part (a) 

corresponds to the original model of an ancient building as graphic designers have 
produced it. Part (b) shows the same building with some of our textures mapped onto 

the pillars. Our goal is to map the original textures onto complete monuments and the 

surrounding landscape. 

Finally, an example is given that shows that the composite texture approach can 

also be beneficial even for textures that have traditionally been treated as a single 

texture. Fig. 14 (a) shows one of the Brodatz textures (D20, French canvas). Image 
(b) is the result of a texture synthesis when this texture is modeled as a single texture. 

Image (d) is the result of a composite texture synthesis without subtexture interactions 

(the black and bright pixels formed the two classes). Image (c) is the result of 

composite texture synthesis with interactions between the two subtextures. This result 

is clearly the best. 



  
(a) (b) 

  
(c) (d) 

Fig. 10. (a) original limestone; (b) unsupervised segmentation; (c) composite synthesis with 

interactions between subtextures; (d) composite synthesis with independent subtextures. 

5 Conclusions and Future Work 

Our texture method learns a model of a complicated texture pattern like a landscape 

or geological structure from example images. This model can be used e.g. to generate 

more of similarly looking texture without verbatim copying of parts of the example 

textures. A first “upgrade” of this technique has also been presented. It takes account 
of nonstationary aspects in the different subtextures, due to their interactions. 

Several extensions are planned. The first is to do away with the rather clumsy, 

sequential generation of the subtextures in case of the upgraded model. After an initial 

generation of the label texture, all subtextures and their interaction effects should 

better be generated together. In that way, mutual influences between all interacting 

subtextures are included. 



  
(a) (b) 

Fig. 11. (a) composite synthesis with interactions between subtextures for the top texture of 

Fig. 6; (b) repeats for comparison the result without interdependency between textures. 

 

  
(a) (b) 

Fig. 12. (a) fully automatic composite texture synthesis of the bottom texture in Fig. 6; (b) the 

automatically generated label map modeled as a label texture from the unsupervised 

segmentation in Fig. 6 bottom-right. 

 



 
(a) 

 
(b) 

Fig. 13. (a) original model of an ancient building at Sagalassos as graphic designers have 

produced it; (b) the same building with some of our textures mapped onto the pillars. 

 



 
(a) (b) 

 
(c) (d) 

Fig. 14. (a) Brodatz D20, French canvas; (b) synthesis as a single texture; (c) composite 

texture synthesis with interaction between the subtextures; (d) composite synthesis without 

interaction between subtextures. 

A second extension is the use of the composite texture models to analyze and 

recognize complete scenes, e.g. the classification of land use and land cover in 

satellite images. Some of these classes can have intricate structures and could be 

better dealt with if described as composite textures. As Paget’s work [10] has shown, 
we can expect that even partial information from the extracted models can suffice for 

this analysis. 

A third extension could be the use of deeper hierarchies and to have more levels 

that just a label texture and its subtextures. A fourth extension could be the 

enhancement of our unsupervised segmentation scheme. 
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