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Low-level cues in an image not only allow to infer higher-level information like the presence of an object,
but the inverse is also true. Category-level object recognition has now reached a level of maturity and
accuracy that allows to successfully feed back its output to other processes. This is what we refer to as
cognitive feedback. In this paper, we study one particular form of cognitive feedback, where the ability
to recognize objects of a given category is exploited to infer different kinds of meta-data annotations
for images of previously unseen object instances, in particular information on 3D shape. Meta-data can
be discrete, real- or vector-valued. Our approach builds on the Implicit Shape Model of Leibe and Schiele
[B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved categorization and segmenta-
tion, International Journal of Computer Vision 77 (1–3) (2008) 259–289], and extends it to transfer anno-
tations from training images to test images. We focus on the inference of approximative 3D shape
information about objects in a single 2D image. In experiments, we illustrate how our method can infer
depth maps, surface normals and part labels for previously unseen object instances.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

When presented with a single image, a human observer can de-
duce a wealth of information, including the overall 3D scene lay-
out, material types, or ongoing actions. This ability is only in part
achieved by exploiting low-level cues such as colors, shading pat-
terns, textures, or occlusions. At least equally important is the
inference coming from higher level interpretations, like object rec-
ognition. Even in the absence of low-level cues, one is still able to
estimate depth, as illustrated by the example of Fig. 1.1

These observations are mirrored by neurophysiological find-
ings, e.g. Rockland and Hoesen [2], as ‘low-level’ areas of the brain
do not only feed into the ‘high-level’ ones, but invariably the latter
channel their output into the former. The resulting feedback loops
over the semantic level are key for successful scene understanding,
see e.g. Mumford’s Pattern Theory [3]. The brain seems keen to
bring all levels into unison, from basic perception up to cognition.

In this work, local object characteristics and other meta-data
are inferred from a single image, based on the knowledge of similar
data for a set of training images of other instances of the same ob-
ject class. This annotation is intensely linked to the process of ob-
ject recognition and segmentation. The variations within the class
are taken into account, and the observed object can be quite differ-
ll rights reserved.
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ent from any individual training example. In our approach, pieces
of annotation from different training images are combined into a
novel annotation mask that matches the underlying image data.
By using 3D shape information as meta-data, we are effectively
able to infer approximative 3D information about recognized ob-
ject instances, given just a single 2D image. As example applica-
tion, take a car entering a car wash (see bottom of Fig. 14). Our
technique allows to estimate the relative depth and surface orien-
tations for each part of the car, as well as to identify the positions
of the windshields, car body, wheels, license plate, headlights etc.
This allows the parameters of the car wash line to better adapt
to the specific car.

The paper is organized as follows. After discussion of related
work, we recapitulate the Implicit Shape Model of Leibe et al. [1]
for simultaneous object recognition and segmentation (Section
3). Then follows the main contribution of this paper, as we explain
how we transfer meta-data from training images to a previously
unseen image (Section 4), for both discrete and real-valued meta-
data. We demonstrate the viability of our approach by transferring
depth maps and surface orientations for cars, as well as object part
labels for both cars and wheelchairs (Section 5). Section 6 con-
cludes the paper.
2. Related work

Several previous examples of cognitive feedback in vision have
already been implemented. Hoiem et al. [4] propose a general
Recognition enables meta-data transfer, Comput. Vis. Image Understand.
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Fig. 1. Humans can infer depth in spite of failing low-level cues, thanks to cognitive-feedback in the brain. In the left photo, recognizing the buildings and the scene as a
whole injects extra information about 3D structure (e.g. how street scenes are spatially organized, and that buildings are parallelepipeda). In turn this enables, e.g. to infer the
vertical edges of buildings although they do not appear in the image, and the relative depths between the buildings. Similarly, recognizing the car and knowing car lacquer is
highly reflective allows to correctly estimate the depth for the center part of the right photo, in spite of contradictive local cues.
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framework which embeds the separate mechanisms of object
detection and scene geometry estimation into a cognitive loop. Ob-
jects can be more reliably detected and false-positive detections in
improbable locations are filtered out based on the automatically
estimated geometry of the scene (e.g. people on trees). In turn, ob-
ject detections allow to improve scene geometry estimation. In [5],
a similar idea is applied to images taken from a moving vehicle,
using car and pedestrian detections to improve ground-plane and
scene depth estimation in a city environment. However, these sys-
tems only couple recognition and crude 3D scene information (the
position of the groundplane). Here we set out to demonstrate the
wider applicability of cognitive feedback, by inferring ‘meta-data’
such as 3D object shape, the location and extent of object parts,
or material characteristics, based on object class recognition. Given
a set of annotated training images of a particular object class, we
transfer these annotations to new images containing previously
unseen object instances of the same class.

The inference of 3D information from single 2D images has
been an ongoing research topic for decades. Inspired by Bieder-
man’s component theory [6], the goal initially was to infer hierar-
chical 3D structure for objects in a 2D image. Many of the first
systems used line drawings (e.g. [7]), implicitly assuming that
the problem of obtaining an accurate line drawing from arbitrary
2D images would be solved in the future. Recently, there has been
a trend towards inferring qualitative, rather than detailed 3D
shape from single real-world photos. Hoiem et al. [8] estimate
the coarse geometric properties of an entire scene by learning
appearance-based models of surfaces at various orientations.
The method focuses purely on geometry estimation, without
incorporating an object recognition process. This means that in
a complex scene, it is impossible to infer separate object identi-
ties from the inferred scene composition. Their system relies so-
lely on the statistics of small image patches, and is optimized
for a very coarse set of surface orientations and a classification
between ground, vertical and sky for the entire scene. In [9],
Sudderth et al. combine recognition with coarse 3D reconstruc-
tion in a single image, by learning depth distributions for a spe-
cific type of scene from a set of stereo training images. The
reconstructions are limited to sparse point-cloud based models
of large-scale scenes (e.g. offices), not detailed models of individ-
ual objects which are the focus of our work. In the same vein,
Saxena et al. [10] are able to reconstruct coarse depth maps from
a single image of an entire scene by means of a Markov Random
Field. As in [8], the method relies solely on statistics of image
patches, and their spatial configuration inside a typical scene.
Therefore it cannot exploit knowledge about specific object types
in the scene, and conversely, the presence of objects cannot be in-
ferred from the system’s output. Han and Zhu [11] obtain quite
detailed 3D models from a single image. Their method uses graph
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
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representations for both the geometry of the objects and their
relations to the scene. To extract the graph representation from
the image and estimate the geometry, a sketch representation
of the objects is generated. This limits the method to objects that
can be represented by a set of lines or have prominent edges, like
trees or polyhedra. Hassner and Basri [12] infer 3D shape of an
object in a single image from known 3D shapes of other members
of the object’s class. Their method is specific to 3D meta-data
though, and the object is assumed to be recognized and seg-
mented beforehand. Their analysis is not integrated with the
detection and recognition of the objects, as is ours.

The above-mentioned works all focus on the estimation of
depth cues from a single image. A more general framework is the
work on image analogies, where a mapping between two given
images A and A0 is transferred to an image B to get an ‘analogous’
image B0. As shown in work by Hertzmann et al. [13] and Cheng
et al. [14], mappings can include texture synthesis, superresolution
and image transformations like blurring and artistic filters. Most
closely related to our work is the mapping that is called ‘texture-
by-numbers’, where A is a parts annotation of a textured image
A0. This allows to generate a plausible textured image from a new
annotation B. Even though no example is shown in the cited works,
it should be possible to do the inverse mapping, i.e. annotate an
unseen image. However, the image analogies framework is also
limited to local image statistics, and does not involve a deeper
understanding of the structure of the image.

Other methods focus on segmentation only, which can be con-
sidered a specific type of meta-data. Kumar et al. [15] combine Lay-
ered Pictorial Structures with a Markov Random Field to segment
object class instances. Because the LPS correspond to object parts,
a rough decomposition of the object into parts can also be inferred.
Unsupervised learning of segmentations for an object class has
been demonstrated by Winn and Jojic [16] and Arora et al. [17].
However, it is unclear whether these methods could be extended
to arbitrary meta-data.

Although our method is able to infer 3D cues for a previously
unseen recognized object instance, it is still limited to the pose
in which it was trained. In [18], we extended the ISM system to
the multi-view case, and we are investigating the integration of
that approach with the meta-data annotation presented in this pa-
per. A number of other multi-view approaches have emerged since
then. For instance, Hoiem et al. [19] have augmented their Lay-
outCRF with a 3D model, and demonstrate the recognition of cars
from multiple viewpoints. In principle, the inferred model pose
might allow to infer 3D shape information for recognized objects,
but this is not explored in their paper [19]. Other methods, such
as Kushal et al. [20] and Savarese and Fei-Fei [21] propose a more
qualitative approach towards multi-view object class recognition,
by modeling objects in different poses using loosely connected
Recognition enables meta-data transfer, Comput. Vis. Image Understand.



Fig. 2. The recognition procedure of the ISM system.
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parts. This makes it more difficult to extend those systems to pro-
duce a dense annotation of the recognized object.

3. Object class detection with an implicit shape model

In this section we briefly summarize the Implicit Shape Model
(ISM) approach proposed by Leibe et al. [1], which we use as the
object class detection technique at the basis of our approach (see
also Fig. 2).

Given a training set containing images of several instances of a
certain category (e.g. side views of cars) as well as their segmenta-
tions, the ISM approach builds a model that generalizes over intra-
class variability and scale. The modeling stage constructs a codebook
of local appearances, i.e. of local structures that occur repeatedly
across the training images. Codebook entries are obtained by clus-
tering image features sampled at interest point locations. Agglomer-
ative clustering is used, and the number of codewords follows
automatically by setting a threshold on the maximal distance be-
tween clusters [1]. Instead of searching for correspondences be-
tween a novel test image and model views, the ISM approach maps
sampled image features onto this codebook representation. We refer
to all features in every training image that are mapped to a single
codebook entry as occurrences of that entry. The spatial intra-class
variability is captured by modeling spatial occurrence distributions
for each codebook entry. Those distributions are estimated by
recording all locations of codebook entry occurrences, relative to
the object centers (which are given as training annotation). Together
with each occurrence, the approach stores a local segmentation
mask, which is later used to infer top-down segmentations.

3.1. ISM recognition

The ISM recognition procedure is formulated as a probabilistic
extension of the Hough transform [1]. Let e be an image patch ob-
served at location ‘. The probability that e matches to codebook en-
try ci can be expressed as pðcijeÞ. Patches and codebook entries are
represented by feature descriptors. In our implementation, two
descriptors match if their distance or similarity (Euclidean or cor-
relation, depending on the descriptor type), respectively, is below
or exceeds a fixed threshold. Each matched codebook entry ci casts
votes for instances of the object category on at different locations
and scales k ¼ ðkx; ky; ksÞ according to its spatial occurrence distri-
bution Pðon; kjci; ‘Þ. The votes are weighted by Pðon; kjci; ‘ÞpðcijeÞ,
and the total contribution of a patch to an object hypothesis
ðon; kÞ is expressed by the following marginalization:

pðon; kje; ‘Þ ¼
X

i

Pðon; kjci; ‘ÞpðcijeÞ ð1Þ

where the summation is over all entries ci in the codebook. The
votes are collected in a continuous 3D voting space (translation
and scale). Maxima are found using Mean Shift Mode Estimation
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
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with a kernel with scale-adaptive bandwidth and a uniform profile
[22,1]. Each local maximum in this voting space yields a hypothesis
that an object instance appears in the image at a certain location
and scale.

3.2. Top-down segmentation

After the voting stage, the ISM approach computes a probabilistic
top-down segmentation for each hypothesis, in order to determine
its spatial support in the image. This is achieved by backprojecting
to the image the votes contributing to the hypothesis (i.e. the votes
that fall inside the mean-shift kernel at the hypothesized location
and scale). The stored local segmentation masks are used to infer
the probability that each pixel p is inside the figure or ground area,
given the hypothesis at location k [1]. More precisely, the figure
probability for p is only affected by codebook entries ci that match
to a patch e containing p, and only by their occurrences that contrib-
ute to the hypothesis at location k. The probability is calculated as a
weighted average over the corresponding pixels in these occur-
rences’ segmentation masks. The weights correspond to the contri-
bution of each occurrence to the hypothesis:

pðp 2 figurejon; kÞ ¼
1
C1

X

e:p2e

X

i

pðp 2 figureje; ci; on; kÞpðe; cijon; kÞ

¼ 1
C1

X

e:p2e

X

i

pðp 2 figurejci; on; kÞ

� pðon; kjciÞpðcijeÞpðeÞ
pðon; kÞ

ð2Þ

The priors pðeÞ and pðon; kÞ are assumed to be uniformly distributed
[1]. C1 is a normalization term to make the equation express a true
probability. The exact value of this term is unimportant because the
outcome of Eq. (2) is used in a likelihood ratio [1]. We underline
here that a separate local segmentation mask is kept for every
occurrence of each codebook entry. Different occurrences of the
same codebook entry in a test image will thus contribute different
local segmentations, based on their relative location with respect
to the hypothesized object center.

In early versions of their work [23], Leibe and Schiele included
an optional processing step, which refines the hypothesis by a
guided search for additional matches (Fig. 2). This improves the
quality of the segmentations, but at a high computational cost.
Uniform sampling was used in [23], which became untractable
once scale-invariance was later introduced into the system. In-
stead, in this paper we propose a more efficient refinement algo-
rithm (Section 4.3).

3.3. MDL verification

In a last processing stage of the ISM system, the computed seg-
mentations are exploited to refine the object detection scores, by
Recognition enables meta-data transfer, Comput. Vis. Image Understand.



Fig. 3. Transferring (discrete) meta-data. Left: two training images and a test image. Right: the annotations for the training images, and the partial output annotation. The
corner of the license plate matches with a codebook entry which has occurrences on similar locations in the training images. The annotation patches for those locations are
combined and instantiated in the output annotation.

4 A. Thomas et al. / Computer Vision and Image Understanding xxx (2009) xxx–xxx

ARTICLE IN PRESS
taking only figure pixels into account. Moreover, this last stage also
disambiguates overlapping hypotheses. This is done by a hypothesis
verification stage based on Minimum Description Length (MDL),
which searches for the combination of hypotheses that together best
explain the image. This step prevents the same local image structure
to be assigned to multiple detections (e.g. a wheel-like image patch
cannot belong to multiple cars). For details, we again refer to [1].

4. Transferring meta-data

The power of the ISM approach lies in its ability to recognize no-
vel object instances as approximate jigsaw puzzles built out of
pieces from different training instances. In this paper, we follow
the same spirit to achieve the new functionality of transferring
meta-data to new test images.

Example meta-data is provided as annotations to the training
images. Notice how segmentation masks can be considered as a
special case of meta-data. Hence, we transfer meta-data with a
mechanism inspired by that used above to segment objects in test
images. The training meta-data annotations are attached to the
occurrences of codebook entries, and are transferred to a test im-
age along with each matched feature that contributed to a hypoth-
esis (Fig. 3). This strategy allows us to generate novel annotations
tailored to the new test image, while explicitly accommodating for
the intra-class variability.

Unlike segmentations, which are always binary, meta-data
annotations can be either binary (e.g. for delineating a particular
object part or material type), discrete multi-valued (e.g. for identi-
fying all object parts), real-valued (e.g. depth values), or even vec-
tor-valued (e.g. surface orientations). We first explain how to
transfer discrete meta-data (Section 4.1), and then extend the
method to the real- and vector-valued cases (Section 4.2).

4.1. Transferring discrete meta-data

In case of discrete meta-data, the goal is to assign to each pixel p
of the detected object a label a 2 fajgj¼1:N . We first compute the
probability pðlabelðpÞ ¼ ajÞ for each label aj separately. This is
achieved by extending Eq. (2) for pðfigureðpÞÞ to the more general
case of discrete meta-data:

pðlabelðpÞ ¼ ajjon; kÞ ¼
1
C2

X

p2NðeÞ

X

i

pðlabelðpÞ ¼ ajjci; on; kÞ

� pðâðpÞ ¼ aeðpÞjeÞpðe; cijon; kÞ ð3Þ
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
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The components of this equation will be explained in detail next.
C2 is again a normalization term. The first and last factors inside
the summation are generalizations of their counterparts in Eq.
(2). They represent the annotations stored in the codebook and
the voting procedure, respectively. One extension consists in
transferring annotations also from image patches near the pixel
p, and not only from those containing it. With the original ver-
sion, it is often difficult to obtain full coverage of the object,
especially when the number of training images is limited. By
extending the neighborhood of the patches, this problem is re-
duced. This is an important feature, because producing the train-
ing annotations can be labor-intensive (e.g. for the depth
estimates of the cars in Section 5.1). Our notion of proximity is
defined relative to the size of the image patch, and parameterized
by a scale-factor sN , which is 3 in all our experiments. More pre-
cisely, let an image patch e be defined by its location
‘ ¼ ð‘x; ‘y; ‘sÞ obtained from the interest point detector (with ‘s

the scale). The neighborhood NðeÞ of e is defined as:

NðeÞ ¼ fpjp 2 ð‘x; ‘y; sN � ‘sÞg ð4Þ

A potential disadvantage of the above procedure is that for
p ¼ ðpx; pyÞ outside the actual image patch, the transferred annota-
tion is less reliable. Indeed, the pixel may lie on an occluded image
area, or small misalignment errors may get magnified. Moreover,
some differences between the object instances shown in the train-
ing and test images that were not noticeable at the local scale can
now affect the results. To compensate for this, we include the sec-
ond factor in Eq. (3), which indicates how probable it is that the
transferred annotation aeðpÞ still corresponds to the ‘true’ annota-
tion âðpÞ. This probability is modeled by a Gaussian, decaying
smoothly with the distance from the center of the patch e, and with
variance related to the scale of e and the scale ks of the hypothesis
by a factor sG (1.40 in our experiments):

pðâðpÞ ¼ aeðpÞ jeÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p expð�ðd2

x þ d2
yÞ=ð2r2ÞÞ

with r ¼ sG � ‘s � ks and ðdx;dyÞ ¼ ðpx � ‘x;py � ‘yÞ ð5Þ

Once we have computed the probabilities pðlabelðpÞ ¼ ajÞ for all
possible labels fajgj¼1:N , we come to the actual assignment: we se-
lect the most likely label for each pixel. Note how for some applica-
tions, it might be better to keep the whole probability distribution
fpðlabelðpÞ ¼ ajÞgj¼1:N rather than a hard assignment, e.g. when feed-
ing back the information as prior probabilities to low-level image
processing.
Recognition enables meta-data transfer, Comput. Vis. Image Understand.
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An interesting possible extension is to enforce spatial continuity
between labels of neighboring pixels, e.g. by relaxation or by rep-
resenting the image pixels as a Markov Random Field. In our exper-
iments (Section 5), we achieved good results already without
enforcing spatial continuity.

The practical implementation of this algorithm requires rescal-
ing the annotation patches. In the original ISM system, bilinear
interpolation is used for rescaling operations, which is justified be-
cause segmentation data can be treated as probability values.
However, interpolating over discrete labels such as ‘windshield’
or ‘bumper’ does not make sense. Therefore, rescaling must be car-
ried out without interpolation.

4.2. Transferring real- or vector-valued meta-data

In many cases, the meta-data is not discrete, but real-valued
(e.g. 3D depth) or vector-valued (e.g. surface orientation). We will
first explain how we obtain a real-valued annotation from quan-
tized training data, and then how fully continuous meta-data is
processed.

4.2.1. Quantized meta-data
If the available meta-data is quantized, we can use the discrete

system as in the previous section, but still obtain a continuous esti-
mate for the output by means of interpolation. The quantized val-
ues are first treated as a fixed set of ‘value labels’ (e.g. ‘depth 1’,
‘depth 2’, etc.). Then we proceed in a way analogous to Eq. (3) to
infer for each pixel a probability for each discrete value. In the sec-
ond step, we select for each pixel the discrete value label with the
highest probability, as before. Next, we refine the estimated value
by fitting a parabola (a ðDþ 1Þ-dimensional paraboloid in the case
of vector-valued meta-data) to the probability scores for the max-
imum value label and the two immediate neighboring value labels.
We then select the value corresponding to the maximum of the
parabola. This is a similar method as used in interest point detec-
tors (e.g. [24,25]) to determine continuous scale coordinates and
orientations from discrete values. Thanks to this interpolation pro-
cedure, we obtain real-valued output even though the input meta-
data is quantized. The advantage of only considering the strongest
peak and its immediate neighbors is that the influence of outlier
votes is reduced (e.g. votes for discrete values far from the peak
have no impact).

4.2.2. Continuous and vector-valued meta-data
Processing fully real- or vector-valued meta-data requires a dif-

ferent approach. Instead of building probability maps for discrete
labels, we store for each pixel all values that have been voted for,
together with their vote weights. We again use Eq. (5) to decrease
the influence of votes with increasing distance from their patch
location. By storing all votes for each pixel we obtain a sampling
of the probability distribution over meta-data values. There are
several ways to derive a single estimate from this distribution. In
a similar vein as in the discrete system, we could take the value
with the highest weight (argmax), but this has proven in experi-
ments to give unreliable results, because it is very sensitive to out-
lier votes. A better method is to take the average, but this can still
be offset by outliers. A third and more robust method is to estimate
the mode of the sampled distribution.

We use a Mean Shift procedure [22] with a fixed window radius
to estimate the mode for each pixel. This method works for 1-
dimensional as well as vector-valued data. The mode estimation
procedure uses a set of candidate windows, which are iteratively
shifted towards regions of higher density until convergence occurs.
Because the number of votes covering each pixel is in the order of
one hundred, there is no need to initialize the windows through
random sampling. Instead, we cover the entire distribution with
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
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candidate windows by considering the location of each vote as a
candidate window, and removing all overlapping windows. Two
windows overlap if their distance is less than the window radius.
Depending on the type of data, distance can be defined as Euclid-
ean distance, or as the angle between vectors. Next, we iterate over
all windows by replacing each window’s position by the weighted
mean of all votes within its radius, until convergence occurs. The
score of a window is the sum of the weights of all its votes. The
coordinates of the window with the highest score yield the posi-
tion â of the mode. The estimate for the final value for p can be for-
mulated as:

âðpÞ ¼ argmax
a

X

ai jdða;aiðpÞÞ<h

wðaiðpÞÞ ð6Þ

The scalar or vector value aiðpÞ expresses the i-th vote for the value
of pixel p. There are as many votes as there are patches in the image
that contribute to the pixel p. Their weights wðaiðpÞÞ correspond to
the weights of the object center votes in the Hough space cast by
those patches, scaled by Eq. (5). The function dðx; yÞ is a distance
measure between meta-data values (e.g. Euclidean distance or an-
gle) and h is the mean-shift window radius.

In case there are multiple modes with the same score, we take
the average position (this occurs rarely in our experiments). The la-
bel ‘background’ is assigned if the score of the window around â is
smaller than the sum of the weights of background votes.

Fig. 4 illustrates the mode estimation procedure for both 1-
dimensional meta-data (e.g. depth values) and 3-dimensional nor-
mal vectors. In the latter case, the windows are circles on a unit
sphere, and the distance measure between the votes and win-
dows is the angle between their vectors. When updating the win-
dow positions, care must be taken to keep the resulting vectors
normalized. When the meta-data consists of vectors that need
to be compared using Euclidean distance (e.g. 3D points), the win-
dows are (hyper)spheres of the same dimensionality as the
vectors.

4.3. Refining hypotheses

When large areas of the object are insufficiently covered by
interest points, no meta-data can be assigned to them. Using a
large value for sN will only partially solve this problem, because
there is a limit as to how far information from neighboring points
can be reliably extrapolated. A better solution is to actively search
for additional codebook matches in these areas. The refinement
procedure in early, fixed-scale versions of the ISM system [23]
achieved this by means of uniform sampling. A dense 2D grid of
candidate points was generated around the hypothesis, which is
intractable in the scale-invariant (3D) case. Therefore, we have
developed a more efficient refinement algorithm which only
searches for matches in promising locations.

For each hypothesis, new candidate points are generated by
backprojecting all occurrences in the codebook, excluding points
nearby existing interest points. We define two interest points to
be nearby, if there is more than 85% mutual overlap between the
neighborhoods over which their feature descriptors are computed.
When the feature descriptor for a new point matches with the
codebook cluster(s) that backprojected it, an additional hypothesis
vote is cast. The confidence for this new vote is reduced by a pen-
alty factor to reflect the fact that it was not generated by an actual
interest point. In all our experiments, we use a penalty factor of 0.5.
The additional votes enable the meta-data transfer to cover those
areas that were initially missed by the interest point detector. This
procedure is illustrated in Fig. 5.

This refinement step can either be performed on the
final hypotheses that result from the MDL verification, or on all
Recognition enables meta-data transfer, Comput. Vis. Image Understand.
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Fig. 4. Mean-Shift mode estimation for continuous and vector-valued meta-data. The top left shows a 3� 3 pixel fragment from an image, with 1D vote distributions for each
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hypotheses that result from the initial voting. In the latter case, it
will improve MDL verification by enabling it to obtain better figure
area estimates of each hypothesis [1]. Therefore, we perform
refinement on the initial hypotheses in all our experiments.

5. Experimental evaluation

We evaluate our approach on two object classes: cars and
wheelchairs. For cars, we recover three types of annotations. The
first is a 3D depth map, indicating for each pixel the distance from
the camera (a real-valued labeling problem). The second is an ori-
entation map, representing the surface normal for each pixel. This
is a vector-valued labeling problem. We stress that both these re-
sults are achieved from a single image of a previously unseen
car. In the third experiment, we aim at decomposing the car in
its most important parts (wheels, windshield, etc.), which is a dis-
Fig. 5. Refining a hypothesis. An image with poor contrast (top left) produces
insufficient interest points to cover the whole object (top right). By backprojecting
the occurrence locations from the detected peak in the Hough space (bottom left),
additional points can be found (bottom center), and a more complete annotation
can be constructed (bottom right).

Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
(2009), doi:10.1016/j.cviu.2009.03.010
crete labeling problem. We perform a similar part decomposition
experiment on the wheelchairs. We first perform a series of exper-
iments on controlled images to assess the annotation quality only.
Then we show results on challenging images which demonstrate
the recognition ability of our system.

5.1. Inferring 3D shape

In our first experiment, we infer 3D information, consisting of a
depth map and surface orientations, as meta-data for the object
class ‘car’. A possible application is an automated car wash. Even
though such systems mostly have sensors to measure distances
to the car, they are only used locally while the machine is already
running. It could be useful to optimize the washing process before-
hand, based on the car’s global shape (both depth and orientations)
inferred by our system.

Our dataset is a subset of that used in [5]. It was obtained from
the LabelMe website [26], by extracting images labeled as ‘car’ and
Fig. 6. Obtaining depth and orientation maps for the car training images. Left shows
the original image, middle the image with the best matching 3D model superim-
posed. At the right, the extracted depth map is shown for the top image, and the
orientation map for the bottom image.

Recognition enables meta-data transfer, Comput. Vis. Image Understand.



Fig. 7. Results for the car depth map and surface orientation experiments. From left to right: test image, ground-truth and output of our system for the depth map
experiment, and ground-truth and output for the surface orientation experiment. The R, G, B colors represent the components of the surface normal according to Eq. (7).
White areas are unlabeled and can be considered background.
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sorting them according to their pose. For our experiments, we only
use the ‘az300deg’ pose, which is a semi-profile view. In this pose
parts from both the front (windscreen, headlights, license plate)
and side (wheels, windows) are visible. Moreover, this is the least
planar view, resulting in more interesting depth/orientation maps
compared to purely frontal or side views. Note that while each ISM
detector is only trained for a single viewpoint, it can be extended to
handle multiple viewpoints [18]. The dataset contains a total of
139 images. We randomly picked 79 for training, and 60 for test-
ing. We train an ISM system using the Hessian-Laplace interest
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
(2009), doi:10.1016/j.cviu.2009.03.010
point detector [27] and Shape Context descriptors [28], because
this combination has been shown to perform best in [29]. The
resulting codebook has 1576 entries, with a total of 84148
occurrences.

To obtain training and ground-truth data for both the depth and
orientation maps, we manually align a 3D model on top of each
training image. The most suitable 3D model for each image is se-
lected from a freely available collection2 (Fig. 6). Depth is extracted
http://dmi.chez-alice.fr/models1.html.

Recognition enables meta-data transfer, Comput. Vis. Image Understand.
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from the OpenGL Z-buffer. In general, any 3D scanner or active light-
ing setup could be used to automatically obtain 3D shape annota-
tions during training. We normalize the depths based on the
dimensions of the 3D models by assuming that the width of a car
is approximately constant. Orientations are encoded by mapping
each surface normal vector n ¼ ðx; y; zÞ to a 24 bit color
c ¼ ðr; g; bÞ (e.g. with a fragment shader):

c ¼ 255 � ðnþ ð0:5;0:5;0:5ÞÞ ð7Þ
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We test the system on the 60 test images, using the real-valued
method from Section 4.2.2. For the Mean Shift mode estimation,
we use a window radius h of 24% of the total depth range, and 60
degrees for the orientations. The goal of this first experiment is to
assess the quality of the annotations only, not the recognition per-
formance, which will be demonstrated in Section 5.2. Because each
image only contains one object, we therefore select the detection
with highest score for meta-data transfer. Some of the resulting
annotations can be seen in the third and fifth columns of Fig. 7.

To evaluate this experiment quantitatively, we use the ground-
truth annotations to calculate the following error measures. We
define leakage as the percentage of background pixels in the
ground-truth annotation that were labeled as non-background by
the system. The leakage for both the depth map and orientation
experiments, averaged over all test images, is 5.7%. We also define
a coverage measure, as the percentage of non-background pixels in
the ground-truth images labeled non-background by the system.
The coverage obtained by our algorithm is 94.6%. This means our
method is able to reliably segment the car from the background.

All training and ground-truth depth maps are scaled to the
interval [0,1] such that their depth range is 3.5 times the width
of the car. The average absolute value of the depth error is 3.94%
of this total range. This is only measured inside areas which are la-
beled non-background in both the ground-truth and result images,
because the depth is undefined for the background. Fig. 8 shows
how the fraction of this area varies in function of increasing abso-
lute error threshold. It is possible to estimate the depth error in
real-world units, by scaling the normalized depth maps by a factor
based on the average width of a real car, which we found to be
approximately 1.80 m. A plausible real-world depth error can be
calculated by multiplying the relative error measure by
3:5 � 1:80m, which yields 24.8 cm for the mean absolute error. To
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th maps of the fifth car (top) and sixth car (bottom) in Fig. 7.
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better visualize how the output compares to the ground-truth,
Fig. 9 shows a few horizontal slices through two depth maps of
Fig. 7. Fig. 10 shows some views of a 3D model created by mapping
the image of the recognized car onto the depth map produced by
our system.

To compare results between fully continuous meta-data and
using quantized meta-data, we repeated the depth map experi-
ment with the depth maps quantized to 20 levels. The interpolat-
ing method from Section 4.2.1 was used to obtain a continuous
result. For this experiment, the leakage is 4.8%, the coverage
94.6% and the depth error estimate 26.7 cm. This shows that
although the discrete method performs already well, the continu-
ous method does better, and should be used whenever possible.

For the surface orientation experiment, we can calculate the
average angular error over the area that is labeled foreground in
both the ground-truth and test image. The average error over all
test images is 23.3 degrees.

We examined the influence of the number of training images on
annotation performance, by repeating the depth map experiment
with ISMs trained from fewer images. We sorted the images
according to the numbers of occurrences they have in the 79-image
ISM. Images with fewer occurrences are removed first. We train
ISMs in an identical way as described above, using less and less
training images, from 70 down to 17. Fig. 11 shows how the cover-
age and depth error within non-background areas evolve with
varying numbers of training images. Performance remains compa-
Fig. 10. Some views of a texture mapped 3D model, generated from the depth map
of the recognized car in the top left corner.
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Fig. 11. Evolution of coverage and depth error within non-background areas, in function of the number of training images for the car depth map experiment.

Fig. 12. Results for the car parts annotation experiment. From left to right: test
image, ground-truth, and output of our system. White areas are unlabeled and can
be considered background.
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Table 1
Confusion matrix for the car parts annotation experiment. The rows represent the
annotation parts in the ground-truth maps, the columns the output of our system. The
last column shows how much of each class was left unlabeled. For most evaluations,
those areas can be considered ‘background’.

bkgnd body bumper headlt window wheels license unlabeled

bkgnd 23.56 2.49 1.03 0.14 1.25 1.88 0.04 69.61
body 4.47 72.15 4.64 1.81 8.78 1.86 0.24 6.05
bumper 7.20 4.54 73.76 1.57 0.00 7.85 2.43 2.64
headlt 1.51 36.90 23.54 34.75 0.01 0.65 0.23 2.41
window 3.15 13.55 0.00 0.00 80.47 0.00 0.00 2.82
wheels 11.38 6.85 8.51 0.00 0.00 63.59 0.01 9.65
license 2.57 1.07 39.07 0.00 0.00 1.04 56.25 0.00

Fig. 13. Results for the annotation experiment on wheelchair images. From left to
right: test image, ground-truth, and output of our system. White areas are
unlabeled and can be considered background.

Table 2
Confusion matrix for the wheelchair part annotation experiment (cfr. Table 2).

bkgnd frame seat armrest wheels grab-area unlabeled

bkgnd 32.58 1.90 0.24 0.14 1.10 0.37 63.67
frame 15.29 66.68 6.47 0.46 6.90 0.10 4.10
seat 2.17 15.95 74.28 0.97 0.33 1.55 4.75
armrest 11.22 5.62 29.64 49.32 1.25 0.63 2.32
wheels 13.06 9.45 0.36 0.07 71.39 0.00 5.67
grab-area 6.48 1.28 9.77 0.11 0.00 76.75 5.62

Fig. 14. Car detection and annotation results on real-world test images. Even
though the car in the car wash scene (bottom) is in a near-frontal pose, it was still
correctly detected and annotated by the system trained on semi-profile views.
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rable to the 79-image ISM, even when training from only 50
images. Below this point, both coverage and depth error start get-
ting worse slowly. At 26 images, the position and scale of some
detections starts deviating, and at 17 images, some cars cannot
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
(2009), doi:10.1016/j.cviu.2009.03.010
be recognized at all. This shows that the performance of the system
degrades gracefully with the number of training images, and that it
performs well even with considerably less than the original 79
images.

5.2. Object decomposition

In further experiments, the goal is to delineate certain areas of
interest on the objects, which is a discrete annotation task. For
Recognition enables meta-data transfer, Comput. Vis. Image Understand.



Fig. 15. Wheelchair detection and annotation results on challenging real-world test images. All detections are correct except for the two topmost ones in the center left
image. Note how one wheelchair in the middle right image was missed because it is not in the pose used for training.
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our car wash scenario, a decomposition into parts would allow dif-
ferent washing methods to be applied to different car parts. For the
class of wheelchairs, a possible application is a service robot. This
robot’s task could be to retrieve a wheelchair, for instance in a hos-
pital or to help a disabled person at home. In order to retrieve the
wheelchair, the robot must be able to both detect it and determine
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
(2009), doi:10.1016/j.cviu.2009.03.010
where to grab it. Our method will help the robot to get close to the
grabbing position, after which a detailed analysis of scene geome-
try in a small region can establish the grasp [30].

We annotated our car dataset with ground-truth part segmen-
tations for body, windshield/windows, wheels, bumper, lights
and license plate. Aside from the different meta-data, the training
Recognition enables meta-data transfer, Comput. Vis. Image Understand.
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phase is identical to the one in Section 5.1. The testing phase is per-
formed with the method presented in Section 4.1. Results are
shown in Fig. 12. The leakage for this experiment is 6.83% and cov-
erage is 95.2%.

We report a quantitative evaluation for this experiment in the
form of a confusion matrix. For each test image, we count how
many pixels of each part aj in the ground-truth image are labeled
by our system as each of the possible parts (body, windows, etc.),
or remain unlabeled (which can be considered background in most
cases). This score is normalized by the total number of pixels of
that label in the ground-truth âj. Table 1 shows the confusion table
entries averaged over all test images. The diagonal elements show
how well each part was recovered in the test images. Labeling per-
formance is good, except for the headlights. This is due to the fact
that they are the smallest parts in most of the images. Small parts
have a higher risk of being confused with the larger parts (body,
bumper) in their neighborhood.

For a second part decomposition experiment, we collected 141
images of wheelchairs from Google Image Search. We again chose
semi-profile views, because they are the most complex and most
widely available views. All images are annotated with ground-
truth part segmentations for grab area, wheels, armrests, seat,
and frame. In our assistive robot scenario, the grab area is the most
important one. We included the rear right wheels in the ‘frame’ la-
bel, for two reasons. First, that wheel is often heavily or completely
occluded by the frame itself. Second, this illustrates how our sys-
tem can differentiate between similar-looking structures, based
on their position on the object. A few representative images and
their ground-truth annotations can be seen in the left and middle
columns of Fig. 13.

The images are randomly split into a training and test set. We
train an ISM system using 80 images in a similar way as for the
car experiments. The codebook has 4289 entries, with a total of
133138 occurrences. Next, we test the system on the remaining
61 images, using the method from Section 4.1. Some of the result-
ing annotations can be seen in the third column of Fig. 13. The grab
area is accurately localized.

With a leakage of 3.75%, and a coverage 95.1%, the segmenta-
tion performance is again very good. The confusion table is shown
in Table 2. Not considering the armrests, the system performs well
as it labels correctly between 67% and 77% of the pixels, with the
highest score being for the part we are the most interested in, i.e.
the grab area. The lower performance for the armrests is again
due to the fact that they are the smallest parts in most of the
images.

5.3. Combined recognition and annotation in cluttered images

To illustrate the ability to simultaneously detect objects in clut-
tered scenes and infer meta-data annotation, we have performed
the part decomposition experiment on challenging real-world
images for both the car and wheelchair classes. Results for the cars
are shown in Fig. 14.

For the wheelchairs, we collected 34 images with considerable
clutter and/or occlusion. We used the same ISM system as in the
annotation experiment, to detect and annotate the chairs in these
images. Some results are shown in Fig. 15. We consider a detection
to be correct when its bounding box has at least 50% overlap with
the ground-truth bounding box. Out of the 39 wheelchairs present
in the images, 30 were detected, and there were 7 false positives.
This corresponds to a recall of 77% and a precision of 81%.

Processing time is in the order of 1 min for small images and
6 min for large cluttered images on a Core 2 Quad PC. Memory
usage is between 200 MB for small images and 360 MB for large
images. Little to no attempts at optimization have been done yet,
so there is a lot of potential for making the software more efficient.
Please cite this article in press as: A. Thomas et al., Shape-from-recognition:
(2009), doi:10.1016/j.cviu.2009.03.010
6. Conclusions

We have developed a method to transfer meta-data annotations
from training images to test images containing previously unseen
objects, based on object class recognition. Instead of using extra
processing for the inference of meta-data, this inference is deeply
intertwined with the actual recognition process. Low-level cues
in an image can lead to the detection of an object, and the detec-
tion of the object itself causes a better understanding of related
low-level cues, like depth, orientations or part labels. The resulting
meta-data inferred from the recognition can be used as input for
other systems, e.g. as a prior for a 3D reconstruction algorithm.

Future research includes closing the cognitive loop by using the
output from our system as input for another system. For instance,
inferred depths, orientations and/or part labels can be used to
guide a robot’s actions, possibly in combination with other sys-
tems. Another interesting extension would be a method to improve
the quality of the annotations by means of relaxation or Markov
Random Fields.
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