
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Efficient human annotation schemes for

training object class detectors

Dimitrios P. Papadopoulos
T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2018





Abstract
A central task in computer vision is detecting object classes such as cars and horses

in complex scenes. Training an object class detector typically requires a large set of

images labeled with tight bounding boxes around every object instance. Obtaining

such data requires human annotation, which is very expensive and time consuming.

Alternatively, researchers have tried to train models in a weakly supervised setting (i.e.,

given only image-level labels), which is much cheaper but leads to weaker detectors.

In this thesis, we propose new and efficient human annotation schemes for training

object class detectors that bypass the need for drawing bounding boxes and reduce the

annotation cost while still obtaining high quality object detectors.

First, we propose to train object class detectors from eye tracking data. Instead

of drawing tight bounding boxes, the annotators only need to look at the image and

find the target object. We track the eye movements of annotators while they perform

this visual search task and we propose a technique for deriving object bounding boxes

from these eye fixations. To validate our idea, we augment an existing object detection

dataset with eye tracking data.

Second, we propose a scheme for training object class detectors, which only re-

quires annotators to verify bounding-boxes produced automatically by the learning

algorithm. Our scheme introduces human verification as a new step into a standard

weakly supervised framework which typically iterates between re-training object de-

tectors and re-localizing objects in the training images. We use the verification signal

to improve both re-training and re-localization.

Third, we propose another scheme where annotators are asked to click on the center

of an imaginary bounding box, which tightly encloses the object. We then incorporate

these clicks into a weakly supervised object localization technique, to jointly localize

object bounding boxes over all training images. Both our center-clicking and human

verification schemes deliver detectors performing almost as well as those trained in a

fully supervised setting.

Finally, we propose extreme clicking. We ask the annotator to click on four physi-

cal points on the object: the top, bottom, left- and right-most points. This task is more

natural than the traditional way of drawing boxes and these points are easy to find. Our

experiments show that annotating objects with extreme clicking is 5⇥ faster than the

traditional way of drawing boxes and it leads to boxes of the same quality as the orig-

inal ground-truth drawn the traditional way. Moreover, we use the resulting extreme

points to obtain more accurate segmentations than those derived from bounding boxes.
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Chapter 1

Introduction

Contents
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The human brain can process visual information and analyze the surrounding en-

vironment successfully. By quickly looking at a scene, we are able to recognize and

deeply analyze the visual concepts of an image or a video. Even from a very young

age, humans are remarkably capable of quickly detecting diverse object instances, lo-

calizing them in scenes by understanding their exact layout, understanding the relations

between them, and inferring any actions that take place in a very complex scene. More

importantly, humans have the ability to infer the motivations of other people’s actions

or predict accurately how a scene will look in the immediate future.

Albeit trivial even for three-year old children, these tasks are extremely challeng-

ing even for our most advanced machines. Computer Vision is the field of Artificial

Intelligence that tries to solve all these tasks. The grand goal of computer vision is to

make computers see and understand the visual content of an image or a video in the

same way humans do. Until recently (2012), our computers struggled at performing

even close to human performance at any of the aforementioned tasks. During the last

five years (2012-2017), with the evolution of deep learning and of the powerful Con-

volutional Neural Networks (CNNs) [Krizhevsky et al., 2012], we observed a dramatic

increase in performance on various important visual recognition tasks, such as image

classification, object detection or action recognition. In 2015, the first computer vision

1



2 Chapter 1. Introduction

algorithm seemed to perform similarly with humans in the task of image classification

on the popular ImageNet image classification challenge [Russakovsky et al., 2015a].

Nevertheless, there is still a long way to go before our machines understand the world

around us.

A fundamental component of most computer vision algorithms is the learning pro-

cedure. Similar to humans, the machine needs to be trained beforehand with a lot of

examples in training images in order to be able to learn a visual model and make pre-

diction in new images. Obtaining such data requires human annotation which is very

expensive and time consuming. This thesis addresses this annotation problem in the

object detection task. Our goal is to propose efficient annotation schemes that reduce

the manual human annotation cost.

Outline. The problem statement of this thesis is presented in Section 1.1. In Sec-

tion 1.2, we describe the main contributions of this thesis, while in Section 1.3 we

present the list of the publications resulting from these contributions. Finally, in Sec-

tion 1.4 we present how the thesis is organized.

1.1 Problem statement

Detecting objects in images is fundamental in computer vision. Object class detection

is the task of predicting a bounding box around each instance of a given object class

in a test image (Figure 1.1). Detecting and localizing objects in real-world images is

a highly challenging task (Figure 1.2). The appearance of an instance may differ sig-

nificantly from other instances of the same class (intra-class variation). Objects can

be found in a wide variety of different poses and viewpoints, which can significantly

change their visual appearance. Also, objects may appear truncated by the image bor-

der or partially occluded by other objects.

Training object class detectors typically requires a large, diverse set of images in

which objects are manually annotated with tight bounding boxes drawn by humans

(full supervision, Figure 1.3). This task is tedious, very time consuming and expensive.

For instance, annotating ILSVRC [Russakovsky et al., 2015a], currently the most pop-

ular object class detection dataset, required 35s per bounding-box by crowd-sourcing

on Mechanical Turk using a technique specifically developed for efficient bounding-

box annotation [Su et al., 2012].

This enormous annotation cost has been the main driving factor that led the com-
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motorbike motorbike motorbike

Figure 1.1: Given an image of a scene, an object class detector should predict a bounding-box

around each instance of an object class. The figure presents object detection predictions for

the motorbike class.

puter vision community to explore alternative annotation methods. Weakly Supervised

Object Localization (WSOL) has become a significant task in recent years to reduce

the manual labeling effort to learn object classes [Fergus et al., 2003; Chum and Zis-

serman, 2007; Nguyen et al., 2009; Deselaers et al., 2010; Pandey and Lazebnik, 2011;

Siva and Xiang, 2011; Russakovsky et al., 2012; Siva et al., 2012; Shi et al., 2013;

Song et al., 2014a,b; Bilen et al., 2014; Cinbis et al., 2014; Wang et al., 2015; Bilen

and Vedaldi, 2016; Kantorov et al., 2016]. These methods are trained from a set of

images labeled only as containing a certain object class, without being given the lo-

cation of the objects (weak supervision, Figure 1.3). The goal of a WSOL method is

to localize the objects in its own training images while learning an object detector for

localizing instances in new test images. While the weakly supervised setting is sub-

stantially cheaper, the resulting object detectors typically deliver only about half the

accuracy of their fully supervised counterparts [Deselaers et al., 2010; Siva and Xiang,

2011; Siva et al., 2012; Shi et al., 2013; Song et al., 2014a,b; Bilen et al., 2014; Cinbis

et al., 2014; Wang et al., 2015; Bilen and Vedaldi, 2016; Kantorov et al., 2016].
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Figure 1.2: Challenges in object detection. Objects may be found in a wide variety of (a)

different poses and viewpoints, may appear (b) truncated by the image border or (c) partially

occluded by other objects or may be (d) very blurry or very dark. All these factors can sig-

nificantly change the visual appearance of the objects making the object detection task very

challenging. The figure presents examples from the COCO dataset [Lin et al., 2014] for the cat

class.

1.2 Contributions

In this thesis we propose four new and efficient human annotation schemes for training

object class detectors. Our schemes require minimal human supervision, reducing the

enormous annotation cost of drawing bounding boxes. More particularly, the contribu-

tions of this thesis are:

• A novel approach to training object detectors from eye tracking data. Instead of

carefully marking every training image with accurate bounding-boxes, the an-

notators only need to find the target object in the image, look at it, and press a

button. By tracking the eye movements of the annotators while they perform this

task, we obtain valuable information about the position and size of the target ob-

ject. This task can be performed very efficiently by human observers, especially

compared to the time required to draw a bounding box. To test our hypothesis

that eye tracking data can reduce the annotation effort required to train object

class detectors, we collected eye tracking data for the popular PASCAL VOC

2012 [Everingham et al., 2012]. We then propose a technique for deriving object

bounding-boxes from these eye fixations and we show that any standard ob-

ject class detector can be trained on the bounding-boxes predicted by our model
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Full supervision Weak supervision 

motorbike	 motorbike	

Figure 1.3: Object class detectors are typically trained under full supervision (left): a large,

diverse set of images in which objects are manually annotated with tight bounding boxes is

required. In the weakly supervised setting (right), the detector is trained from a set of images

labeled only as containing a certain object class. In contrast to full supervision, the location

annotation of the objects is not given.

(Chapter 3).

• An efficient annotation scheme for training object detectors which only requires

annotators to verify bounding-boxes produced automatically by the learning al-

gorithm. Our scheme iterates between re-training the detector, re-localizing ob-

jects in the training images, and human verification. We use the verification sig-

nal both to improve re-training and to reduce the search space for re-localization,

which makes these steps different to what is normally done in a weakly super-

vised setting. In extensive experiments on PASCAL VOC 2007 [Everingham

et al., 2007], we show that (1) using human verification to update detectors and

reduce the search space leads to the rapid production of high-quality bounding

box annotations; (2) our scheme delivers detectors performing almost as good

as those trained in a fully supervised setting, without ever drawing any bound-

ing boxes; (3) as the verification task is much faster than drawing, our scheme

substantially reduces total annotation time (Chapter 4).

• An efficient annotation scheme for training object detectors with center-click su-

pervision. We ask annotators to click on the center of an imaginary bounding

box which tightly encloses the object instance. We then incorporate these clicks

into existing Multiple Instance Learning techniques for weakly supervised object
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localization, to jointly localize object bounding boxes over all training images.

In extensive experiments on PASCAL VOC 2007 [Everingham et al., 2007] and

MS COCO [Lin et al., 2014], we show that (1) our scheme delivers high-quality

detectors, performing substantially better than those produced by weakly super-

vised techniques, with a modest extra annotation effort; (2) these detectors in

fact perform in a range close to those trained from manually drawn bounding

boxes; (3) as the center-click task is very fast, our scheme substantially reduces

total annotation time (Chapter 5).

• Extreme clicking for efficient object annotation. The traditional way of drawing

bounding boxes [Su et al., 2012] is very time consuming and involves clicking

on imaginary corners of a tight box around the object. This is difficult as these

corners are often outside the actual object and several adjustments are required to

obtain a tight box. Instead, we ask the annotator to click on four physical points

on the object: the top, bottom, left- and right-most points. This task is more natu-

ral and these points are easy to find. We crowd-source extreme point annotations

for PASCAL VOC 2007 [Everingham et al., 2007] and 2012 [Everingham et al.,

2012] and show that (1) annotation time is only 7s per box, 5⇥ faster than the

traditional way of drawing boxes [Su et al., 2012]; (2) the quality of the boxes is

as good as the original PASCAL ground-truth drawn the traditional way; (3) de-

tectors trained on our annotations are as accurate as those trained on the original

ground-truth. Moreover, extreme clicking not only yields box coordinates, but

also four accurate boundary points. We show (4) how to incorporate them into

GrabCut [Rother et al., 2004] to obtain more accurate segmentations than those

delivered when initializing it from bounding boxes; (5) semantic segmentations

models trained on these segmentations outperform those trained on segmenta-

tions derived from bounding boxes (Chapter 6).

1.3 Publications

The contributions presented in this thesis have been published in the following papers:

• D.P. Papadopoulos, A.D.F. Clarke, F. Keller, and V. Ferrari. Training object class

detectors from eye tracking data. In Proceedings of the European Conference on

Computer Vision (ECCV), 2014.
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• D.P. Papadopoulos, J.R.R. Uijlings, F. Keller, and V. Ferrari. We dont need no

bounding-boxes: Training object class detectors using only human verification.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016. (spotlight oral)

• D.P. Papadopoulos, J.R.R. Uijlings, F. Keller, and V. Ferrari. Training object

class detectors with click supervision. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017. (spotlight oral)

• D.P. Papadopoulos, J.R.R. Uijlings, F. Keller, and V. Ferrari. Extreme clicking

for efficient object annotation. In Proceedings of the International Conference

on Computer Vision (ICCV), 2017.

1.4 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 presents the related work.

Chapter 3 presents our annotation scheme of training object detectors from eye track-

ing data. Chapter 4 presents our scheme of training object detectors using only hu-

man verification. Chapter 5 presents another annotation scheme where annotators are

merely need to click on the center of the objects. Chapter 6 presents our extreme click-

ing strategy for annotating object instances. Finally, Chapter 7 briefly summarizes

our contributions, draws general conclusions by comparing our schemes and presents

perspectives for future work.
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In this chapter, we first provide an overview of the object class detection task and

we briefly review the most important landmarks in the history of object detection (Sec-

tion 2.1). In Section 2.2, we provide an overview of weakly supervised object localiza-

tion techniques, where the task is to train object detectors from image-level labels only.

Finally, in Section 2.3, we discuss other alternative ways to reduce human annotation

effort for training object detectors, such as transfer learning or using other forms of

supervision such as text that naturally occurs near an image.

9
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2.1 Object class detection

Object class detection is one of the most challenging and important tasks in computer

vision [Murase and Nayar, 1995; Lowe, 1999; Schmid and Mohr, 1996; Rothganger

et al., 2003; Mahamud and Hebert, 2003; Tuytelaars and Van Gool, 2004; Moreels

et al., 2004; Ferrari et al., 2004; Viola and Jones, 2001; Viola et al., 2005; Dalal and

Triggs, 2005; Vedaldi et al., 2009; Ferrari et al., 2010; Felzenszwalb et al., 2010; Mal-

isiewicz et al., 2011; Alexe et al., 2010; Felzenszwalb et al., 2010; Uijlings et al., 2013;

Sermanet et al., 2014; Girshick et al., 2014; He et al., 2014; Girshick, 2015; Simonyan

and Zisserman, 2015; Ren et al., 2015; Gidaris and Komodakis, 2016; He et al., 2016;

Liu et al., 2016]. Object class detection is the task of predicting a tight axis-aligned

rectangle (called bounding box) around each instance of a given object class in a test

image (Figure 1.1).

Most of the object class detectors follow a common procedure: At training time,

a window classifier is trained to decide whether a window contains an instance of the

target object. At test time this classifier is applied to score windows on a test image.

The local maxima of the score function are returned as the detections. Generally, image

windows are represented with robust feature vectors. After the arrival of Convolutional

Neural Nets (CNNs) in computer vision, CNN-based object detectors are training in

an end-to-end fashion by learning the feature representation together with the window

classifier instead of using hand-crafted features to represent the visual content of the

image windows. Over the last two decades, several object class detectors have been

proposed. The most commonly used modern object detectors are: R-CNN [Girshick

et al., 2014], OverFeat [Sermanet et al., 2014], SPP [He et al., 2014], MRCNN [Gi-

daris and Komodakis, 2015], Fast R-CNN [Girshick, 2015], Faster R-CNN [Ren et al.,

2015], YOLO [Redmon et al., 2016], SSD [Liu et al., 2016] and YOLO9000 [Redmon

and Farhadi, 2016].

In this Section, we first present an overview of the most important landmarks in

the history of object detection (Sections 2.1.1-2.1.4) and especially we focus on the

detectors used in the experiments presented in this thesis [Felzenszwalb et al., 2010;

Girshick et al., 2014; Girshick, 2015]. Then, we briefly review the evolution of the

object detection performance (Section 2.1.5). In Section 2.1.6 we focus on quantifying

the human annotation cost needed to train these object detectors which is particularly

the main concern of this thesis.
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2.1.1 Interest points Era

The early efforts in object detection include appearance-based methods [Murase and

Nayar, 1995; Lowe, 1999; Schmid and Mohr, 1996; Rothganger et al., 2003; Mahamud

and Hebert, 2003; Tuytelaars and Van Gool, 2004; Moreels et al., 2004; Ferrari et al.,

2004] that aim to model the appearance of local object patches. First, these methods

detect a set of interest points in a test image, then they extract appearance features of

the local patches around them and finally match them with features extracted from the

training images by using some distance function. Affine-invariant interest point de-

tectors [Matas et al., 2002; Mikolajczyk and Schmid, 2004; Tuytelaars and Van Gool,

2004], have been widely used in such methods and it is capable of matching local

object regions across images taken from different viewpoints. The appearance of lo-

cal patches is described with a local descriptor (e.g.,the widely used Scale-Invariant

Feature Transform (SIFT) [Lowe, 1999]).

2.1.2 Sliding-window Era

After the early efforts that rely on interest points, a lot of object detections systems

rely on the sliding-window paradigm [Viola and Jones, 2001; Viola et al., 2005; Dalal

and Triggs, 2005; Vedaldi et al., 2009; Ferrari et al., 2010; Felzenszwalb et al., 2010;

Malisiewicz et al., 2011]. As an object can be located at any position and scale in

the image, these methods search exhaustively in a dense grid of the image. First, a

window classifier is trained to decide whether a window contains an instance of the

target object and then at test time is applied to score every window on a dense grid.

The local maxima of the score function are returned as the detections.

Image windows can be represented by local features. The sliding window ap-

proaches based on Bag-of-words (BoW) [Sivic and Zisserman, 2003a; Csurka et al.,

2004a; Vedaldi et al., 2009; Harzallah et al., 2009] represent an image window as

an orderless collection of local features. First, these methods extract local features

(e.g.,SIFT [Lowe, 1999] or SURF [Bay et al., 2008] around points. Typically, these

points are not detected by a keypoint detector but selected from a dense image grid.

Then the extracted features are clustered and get quantized into visual words (clusters).

The set of visual words form the visual codebook. Finally, an image region is repre-

sented by a histogram of visual words. These histograms are then used to train complex

classifiers (e.g., x2-SVM [Maji et al., 2008], EMD-SVM [Zhang et al., 2007]). Spatial

pyramid matching (SPM) models [Lazebnik et al., 2006; Uijlings et al., 2013] improve
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BoW representations by augmenting it with global spatial relations.

Dalal and Triggs [2005] proposed a sliding window detector for pedestrian detec-

tion. They introduced a very successful feature descriptor called Histogram of Gra-

dients (HOG). HOG descriptor is very similar to SIFT [Lowe, 1999] but it also does

contrast normalization over small overlapping cells As window classifier, they use an

SVM. An interesting component of their training procedure is the hard-negative min-

ing. An initial model is trained in order to classify negative windows on training im-

ages. Incorrectly classified negative windows (hard-negatives) are collected and are

used to train a new model. This process may be repeated a few times until the model

converges.

DPM detector. Besides the above approaches, a widely used object class detector is

the Deformable Part Model detector (DPM) [Felzenszwalb et al., 2010]. This object

detection system represents highly variable object classes using mixtures of multi-scale

deformable part models. DPM is built on the pictorial structures framework [Felzen-

szwalb and Huttenlocher, 2005; Fischler and Elschlager, 1973]). Pictorial structures

represent objects by a collection of parts arranged in a deformable configuration. Each

part captures local appearance properties of an object. The deformable configuration

captures the connections between the parts using a star-structured part based model

defined by a root HOG [Dalal and Triggs, 2005] filter and a set of part HOG filters.

The root filter covers the entire object, while the part filters cover smaller parts of the

object. An object class is actually represented by a mixture of star models, each one

captioning a different viewpoint of the object. Figure 2.1 depicts a mixture model with

2 components for the bicycle class.

In Section 3.5, we train DPM detectors on bounding boxes obtained by our pro-

posed scheme and we compare their performance to the one of DPM detectors trained

on ground-truth bounding boxes.

2.1.3 Object proposals Era

The high number of windows need to be evaluated pushed sliding window detector

design towards window classifiers that can be evaluated very quickly. Proposal-based

object detectors aim initially to generate for each image a small number of windows

likely to contain all objects of the image regardless their class. Then, unlike exhaustive

search of sliding window approaches, the class-specific window classifier is evaluated

only at this limited number of proposed windows. For this reason, object proposal
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Figure 2.1: DPM detector: Detections obtained with a two component bicycle model. The first

component captures sideways views of bicycles while the second one frontal and near frontal

views (Image source [Felzenszwalb et al., 2010]).

techniques opened a new horizon of building much heavier window classifiers.

Among the very first object proposal generators [Alexe et al., 2010; Carreira and

Sminchisescu, 2010; Endres and Hoiem, 2010], Alexe et al. [2010] presented a generic

objectness measure that quantifies how likely it is for a window to contain an object

of any class. The objectness measure can be used as location prior to any sliding win-

dow detector in order to greatly reduce the number of windows evaluated (10⇥-40⇥
fewer windows). Interestingly, they show that this massive reduction in the numbers

of windows evaluated using objectness on three object detectors [Dalal and Triggs,

2005; Felzenszwalb et al., 2010; Vedaldi et al., 2009] comes with little compromise

on performance. Since 2010, many methods that generate a set of class-generic object

proposals have been proposed [Rahtu et al., 2011; Van de Sande et al., 2011; Alexe

et al., 2012; Carreira and Sminchisescu, 2012; Ristin et al., 2012; Uijlings et al., 2013;

Manen et al., 2013; Arbeláez et al., 2014; Cheng et al., 2014; Rantalankila et al., 2014;

Krähenbühl and Koltun, 2014; Oneata et al., 2014; Zitnick and Dollár, 2014; Sun and

Batra, 2015].
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In Uijlings et al. [2013], their selective search strategy uses a hierarchical grouping

to deal with all possible object scales. They increase diversity by using a variety of

grouping strategies and a variety of color spaces to deal with different invariance prop-

erties and a variety of region-based similarity functions to deal with the diverse nature

of objects. Also, they showed that the limited number of object proposals makes it

feasible to use a strong window classifier based on dense BoW features that are very

expensive to compute. Their BoW approach was the winner of the PASCAL VOC2012

detection challenge [Everingham et al., 2012]. Until today, selective search is among

the most widely used strategy to generate window proposals.

In this thesis, we mostly use EdgeBoxes [Zitnick and Dollár, 2014] which gives us

an “objectness” measure [Alexe et al., 2010]. EdgeBoxes [Zitnick and Dollár, 2014]

generates object proposals directly from edges. Their core idea is that the number

of contours wholly enclosed by a window proposal is indicative of its likelihood to

contain an object. A contour is wholly enclosed by a window proposal if all edge

pixels belonging to the contour lie within the interior of the window. They simply

propose to score every proposal based on the number of contours it wholly encloses.

2.1.4 Deep learning Era

Convolutional Neural Networks (CNNs) have been heavily used in 1990, since they

constitute a class of models with a large learning capacity. Initially, these models had

several limitations. They require large amounts of training data and they also tend to

easily overfit because of the the huge number of the model parameters.

The most important landmark of CNN was in 2012, when Krizhevsky et al. [2012]

proposed to use CNNs for image classification. They trained a large deep CNN on 1.2

million labeled images from ImageNet dataset [Russakovsky et al., 2015a] and added a

new regularization technique (dropout) that reduce overfitting. They achieved impres-

sive results on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus-

sakovsky et al., 2015a]. After this big success, the state-of-the-art object class de-

tectors have heavily relied on CNNs and have achieved impressive results [Sermanet

et al., 2014; Girshick et al., 2014; He et al., 2014; Girshick, 2015; Ren et al., 2015; He

et al., 2016]. In contract to all the object detectors mentioned in the previous sections,

CNN-based detectors are training in an end-to-end fashion by learning the feature rep-

resentation together with the window classifier instead of using hand-crafted features

to represent the visual content of the image windows.
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Figure 2.2: The AlexNet architecture proposed by Krizhevsky et al. [2012] (Image

source Krizhevsky et al. [2012]).

CNNs are feed-forward neural networks that consist of a sequence of layers of

neurons stacked together. Each layer transforms one set of activations to another one

through a differentiable function. CNNs take as input an image and their layers trans-

form the input to an output set through a series of hidden layers. The main type of

these layers is the convolutional layer which applies a linear transformation (convo-

lution) to its input. This linear transformation is followed by a non-linearity (e.g.,

REctified Linear Unit (ReLU), sigmoid). The network may also contain other types of

layers, such as polling layers that are used to downsample the input or fully-connected

layers. The output of the CNN is the output of the last network layer. Typically a loss

function is defined on the output layer. This is usually optimized using Stochastic Gra-

dient Descent (SGD) with backpropagation [LeCun et al., 1998]. As in the standard

neural networks, backpropagation updates the weights of each layer of the network by

calculating the error at the output and distributing back though the network layers by

computing derivatives.

AlexNet. Figure 2.2 illustrates AlexNet, the well-known CNN architecture proposed

by Krizhevsky et al. [2012]. It consists of five convolutional layers followed by three

fully-connected layers. The network was initially used for image classification with

1,000 classes. In between the main eight layers there are also pooling layers and Recti-

fied Linear Units (ReLU). Krizhevsky et al. [2012] found that using ReLU as the non-

linearity decreases the training time compared to sigmoid and tanh non-linearities. To

prevent overfitting, dropout layers are also implemented. During training, Krizhevsky

et al. [2012] use batch Stochastic Gradient Descent (SGD). They also use data aug-

mentation techniques, such as image translations, horizontal reflections, and patch ex-

tractions.
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Figure 2.3: The VGG-16 architecture proposed by Simonyan and Zisserman [2015] (Image

source Noh et al. [2015]).

Deeper CNN architectures. Depth plays an important role in the performance of

the network. There is the notion that CNNs should be deep to really take advantage

of the hierarchical representation of the visual data. VGG-16 [Simonyan and Zisser-

man, 2015] is one of the most widely used architectures as it has achieved significant

performance gains in various tasks of computer vision. This network consists of 16

convolutional and fully-connected layers. The VGG-16 architecture is shown in Fig-

ure 2.3.

Residual Net (ResNet) proposed by He et al. [2016] is the current state-of-the-art

network architecture, which won the ILSVRC 2015 challenge [Russakovsky et al.,

2015a]. The depth of this architecture is 1,000 layers. ResNet enables these extremely

deep architectures explicitly forcing its layers to learn a residual mapping by introduc-

ing skip connections between layers. It heavily uses batch normalization and unlike

other architectures, it lacks of fully-connected layers at the end of the network.

Region-based Convolutional Neural Network. Region-based Convolutional Neural

Network detector (R-CNN) is the first work that brought the deep learning framework

into the object detection field. It was proposed by Girshick et al. [2014] and achieved

impressive results on modern image datasets [Everingham et al., 2010] as it managed

to improve mean average precision in object detection by more than 30%.

The R-CNN detector is shown in Figure 2.4. A window classifier based on CNNs is
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Figure 2.4: The R-CNN detector. For a test image (1), R-CNN (2) extracts class-generic win-

dow proposals, (3) computes their CNN fixed-length features, and (4) classifies each proposal

using class-specific linear SVMs. (Image source [Girshick et al., 2014]).

applied to selective search proposals [Uijlings et al., 2013] in order to localize objects.

It takes an input image and extracts selective search proposals. For each proposal, the

model then computes a fixed-length feature [Krizhevsky et al., 2012; Jia, 2013] using

CNN. Finally, it classifies each proposal using class-specific linear Support Vector Ma-

chines (SVMs). R-CNN also includes a per-class bounding-box regression mechanism

that refines its detections to enclose the object instances more accurately.

The R-CNN detector is trained by practically fine-tuning the underlying CNN ar-

chitecture which is pre-trained for image classification on the ILSVRC12 classifica-

tion challenge [Krizhevsky et al., 2012]. This pre-training stage is crucial as it enables

learning a discriminative visual representation by leveraging the huge amounts of an-

notated data that are available for this task [Russakovsky et al., 2015a].

Fast R-CNN. Fast R-CNN [Girshick, 2015] builds on the R-CNN detector and em-

ploys several innovations to improve the efficiency both at training and at test time. It

processes all convolutional layers only once for the full image. After the last convo-

lutional layer, a Region of Interest (RoI) pooling layer is introduced which extracts a

fixed-length feature vector for each window proposal from the corresponding region of

the convolutional map. Note that the Fast R-CNN was inspired by the SPP network [He

et al., 2014], as the RoI pooling layer is a special case of the SPP layer. Fast R-CNN

also introduces a multi-task loss function at the end of the network that allows training

for the classification task while learning the bounding box regressor. The Fast R-CNN

detector is shown in Figure 2.5

In this thesis, we mostly use Fast R-CNN detectors using AlexNet [Krizhevsky

et al., 2012] or VGG-16 Simonyan and Zisserman [2015] as the underlying CNN ar-
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Figure 2.5: The Fast R-CNN detector. The test image together with the window proposals are

fed into the convolutional layers of the network. Each proposal is pooled and mapped to a fixed-

length feature vector. The network branches into two layers, a softmax layer (classification

task) and a bounding box regression layer. (Image source [Girshick, 2015]).

chitecture.

Faster R-CNN. Faster R-CNN [Ren et al., 2015] builds upon Fast R-CNN by intro-

ducing a Region Proposal Network (RPN) that is used to generate object proposals.

The RPN is placed after the last shared convolutional layer and slides over the feature

map to determine whether a region is an object or not. Thus, the detector is no longer

relying on external object proposal techniques that made the whole procedure slower.

More importantly, the whole object detection framework can be trained end-to-end. In

practice, Ren et al. [2015] propose an approximate joint training, where the RPN and

the region classification network are merged into one network during training. The pro-

posals generated by the RPN are treated as fixed by the region classification network.

Faster-RCNN leads to slightly better performance than the Fast R-CNN.

2.1.5 Object detection performance

We briefly review here the evolution of performance of the most important object class

detectors over the last years on the popular PASCAL VOC 2007 [Everingham et al.,

2007, 2010], which consist of 20 classes. This dataset contains 5,011 trainval images

and 4,952 test images. The object detectors are trained on the trainval set and we

measure the object detection performance on the test set.

Evaluation. For every test image, the object detector delivers a set of object detections
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(bounding boxes around the objects of each class) accompanied with the predicted de-

tection scores. To evaluate the performance of the detector, one needs to determine

whether the output detections successfully localize and recognize every object. Ever-

ingham et al. [2007] introduced Intersection-over-Union (IoU), a widely used measure

to evaluate object localizations. A detection for a particular class is considered correct

if the area of its intersection with any ground-truth bounding box of this class divided

by the area of their union is greater than 0.5. The object detection precision is com-

puted as the fraction of correct (IoU > 0.5) detections among all detections, while the

recall is computed as the fraction of all instances in the test set that have been correctly

detected. The Precision-Recall curve is computed by sorting all object detections by

their score from which we calculate the Average Precision (AP) measure. In case

of multiple object classes, the standard measure for evaluating object detectors is the

mean Average Precision (mAP), which is simply the mean of the AP metrics for each

class.

We now briefly review the evolution of mAP performance of the important object

detectors on the PASCAL VOC 2007 dataset [Everingham et al., 2007]. In 2009, the

state-of-the-art back then DPM detector achieved 29.0% mAP performance. In 2014,

we had a massive jump in performance thanks to the powerful Convolutional Neural

Networks (CNNs). The successful R-CNN detector of Girshick et al. [2014] achieved

58.5% mAP using the AlexNet architecture [Krizhevsky et al., 2012] and 65.4% mAP

using the deeper VGG-16 architecture of Simonyan and Zisserman [2015]. Faster R-

CNN detector [Ren et al., 2015] using VGG-16 yields 69.9% mAP, while using the

recently proposed ResNet architecture of He et al. [2016] and more training data from

COCO and VOC 2012 achieves the incredible 85.6% mAP.

2.1.6 Training object class detectors

Detecting and localizing objects in real-world images is a highly challenging task. The

appearance of an instance may differ significantly from other instances of the same

object class. This intra-class variation can be seen in Figure 2.6 for images of the class

car. Another challenge in object detection is the wide variety of different poses and

viewpoints that an object can be depicted. This can greatly affect the visual appearance.

Moreover, low quality images (e.g., blurry images or low resolution images) make the

task of detecting objects more difficult. Finally, detecting objects in very cluttered

scenes is very challenging as objects usually appear truncated (i.e., only a part of the
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Figure 2.6: Example of intra-class variation, where instances of the same class (car) have

very different appearance.

object is visible) or partially occluded.

Typically, training object class detectors requires a large, diverse set of images

in which objects are annotated with bounding boxes (full supervision, Figure 1.3).

Manually drawing tight bounding boxes is very time consuming and expensive.

Time to draw a bounding box. The time required to draw a bounding box varies de-

pending on several factors, including the desired quality of the boxes and the particular

protocol used. The PASCAL VOC bounding boxes were obtained by organizing an

“annotation party” where expert annotators were gathered in one place to create high

quality annotations [Everingham et al., 2010].

But crowd-sourcing is essential for annotating larger sets of images with bounding

boxes [Su et al., 2012; Russakovsky et al., 2015a]. A basic quality control strategy

when crowd-sourcing annotations in computer vision is majority voting, i.e., collecting

annotations from multiple human annotators and taking the consensus. This approach

has been successfully applied to various image annotation tasks such as indicating

the presence of objects or attributes [Deng et al., 2009; Sorokin and Forsyth, 2008;

Lin et al., 2014]. However, the task of drawing bounding boxes is significantly more

expensive than answering binary questions about the presence/absence of an object in

an image.

In this thesis, as an authoritative reference we use the efficient protocol of Su et al.

[2012], which was designed to produce high-quality bounding boxes with little human

annotation time on Amazon Mechanical Turk. This protocol was used to annotate

ILSVRC [Russakovsky et al., 2015a]. They proposed to control quality by having one
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Figure 2.7: The work flow of Su et al. [2012] for crowd-sourcing high-quality bounding box

annotations (Image source [Su et al., 2012]).

annotator draw the bounding box and another one to verify the quality of the box.

Similarly, to guarantee coverage, they ask a third annotator to verify whether all object

instances of an object class have bounding boxes. They report 39% efficiency gains

over consensus-based approaches [Deng et al., 2009; Sorokin and Forsyth, 2008]. The

work flow of their protocol is shown is Figure 2.7. Note how low quality bounding

boxes are rejected during the quality verification task and how a new drawing task is

generated again.

They report the following median times for annotating an object class in an image:

• 25.5s for drawing one box,

• 9.0s for verifying its quality and
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• 7.8s for checking whether there are other objects of the same class yet to be

annotated.

Throughout the whole thesis, we only consider localizing one object per class per

image. Thus, we use 25.5s + 9.0s = 34.5s as the reference time for manually annotating

a high-quality bounding box. Note that this is a conservative estimate: when taking

into account that some boxes are rejected in the second step and need to be re-drawn

multiple times until they are correct, the median time increases to 55s. If we use

average times instead of medians, the cost is 117s.

Note how both PASCAL VOC 2007 and 2012, and ILSVRC have images of com-

parable difficulty and come with ground-truth box annotations of similar high qual-

ity [Russakovsky et al., 2015a], justifying our choice of 35s reference time. We also

use the same reference time for COCO [Lin et al., 2014], as we conservatively assume

the cost of drawing boxes would also be same as for ILSVRC, even though COCO

is more difficult. All three datasets have high-quality ground-truth bounding box an-

notations, which we use as reference for comparisons to all our proposed annotation

schemes (Sections 3–6).

Papers reporting faster timings [Jain and Grauman, 2013; Russakovsky et al., 2015b]

aim for lower-quality boxes (e.g. the official annotator instructions of Jain and Grau-

man [2013] show an example box which is not tight around the object). In Chapter 6,

we compare to Russakovsky et al. [2015b].

2.2 Weakly supervised object localization

This enormous annotation cost needed to train an object class detector (Section 2.1.6)

has been the main driving factor that led the computer vision community to explore

alternative annotation methods. Weakly supervised object localization (WSOL) has

become a significant task in recent years to reduce the manual labeling effort to learn

object classes [Fergus et al., 2003; Crandall and Huttenlocher, 2006; Chum and Zis-

serman, 2007; Galleguillos et al., 2008; Lee and Grauman, 2009; Blaschko et al., 2010;

Deselaers et al., 2010; Pandey and Lazebnik, 2011; Siva and Xiang, 2011; Deselaers

et al., 2012; Russakovsky et al., 2012; Siva et al., 2012; Shi et al., 2013; Song et al.,

2014a,b; Bilen et al., 2014; Cinbis et al., 2014; Shi et al., 2015; Cinbis et al., 2016;

Wang et al., 2015; Bilen and Vedaldi, 2016; Kantorov et al., 2016]. WSOL methods

are trained from a set of images labeled only as containing a certain object class. In
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contrast to the fully supervised paradigm, the location annotation of the objects is not

given (see Figure 1.3). The goal of a WSOL method is to localize the objects in the

training images while learning an object detector for localizing instances in new test

images. They typically try to locate the object by searching for patterns of appearance

recurring across the training images.

2.2.1 From early efforts to CNN-based techniques

Early efforts on weakly supervised learning [Fergus et al., 2003; Crandall and Hutten-

locher, 2006; Chum and Zisserman, 2007; Galleguillos et al., 2008; Lee and Grauman,

2009] have been only demonstrated on easy datasets such as CALTECH4 or Weiz-

mann horses. The objects in such datasets are rather centered and occupy a large

portion of the image. Also, there is little scale and viewpoint object variation and lim-

ited background clutter. There were also some methods that tried to experiment on

more challenging datasets, such as ETHZ shape Classes or LabelMe, but they often

reduced the difficulty of the dataset by manually providing information about the scale

of the object [Lee and Grauman, 2009] or select easier subset of images [Chum and

Zisserman, 2007].

The field has made significant progress [Deselaers et al., 2010; Pandey and Lazeb-

nik, 2011; Siva and Xiang, 2011; Deselaers et al., 2012; Russakovsky et al., 2012;

Siva et al., 2012; Shi et al., 2013], as several methods have tried to go beyond and

experiment on more challenging datasets, such as PASCAL VOC 2007 [Everingham

et al., 2007, 2010]. The first work on such a challenging dataset was that of Deselaers

et al. [2010] which employed a conditional random field (CRF) to jointly localize and

learn a new class from weakly supervised data. The key contribution of this method

is the use of object proposals and the objectness score function in the WSOL task (see

Section 2.2.3 for more details). Later, Siva and Xiang [2011] examined the role of

intra-class and inter-class pairwise similarities in WSOL. Also, Siva et al. [2012] pro-

posed a negative mining approach where for a positive image, a candidate window is

selected such that the distance to its nearest neighbor among windows from negative

images is maximal. In Cinbis et al. [2014] introduced a multi-folding idea in multiple

instance learning (MIL) framework, which prevents the premature locked-in behavior.

Recent work on WSOL [Song et al., 2014a,b; Bilen et al., 2014; Cinbis et al., 2016;

Wang et al., 2015; Bilen and Vedaldi, 2016; Kantorov et al., 2016] has also shown

remarkable progress, mainly because of the use of the powerful CNNs [Krizhevsky
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et al., 2012; Simonyan and Zisserman, 2015], which greatly improve visual recognition

tasks. For example, Bilen and Vedaldi [2016] proposed a weakly supervised deep

architecture that modifies a CNN network to operate at the level of image regions,

performing simultaneously region selection and classification.

At this point it is worth mentioning that any comparison between earlier WSOL

methods and recent CNN-based WSOL techniques in not absolutely fair. CNN fea-

tures which are used in WSOL are extracted from a network pre-trained for image

classification on 1 million ILSVRC images with class labels. Even though the objects

in these images are very large and relatively centred, the use of these image labels does

not spoil the weakly supervised manner of the CNN-based WSOL methods. From an

image annotation perspective, no bounding box is manually drawn in these ILSVRC

images.

2.2.2 Performance of WSOL

In Section 2.1.5, we reviewed the incredible increase in performance of object class

detectors trained under full supervision over the last years. We now review the evolu-

tion of the mAP performance of object detectors trained under weak supervision in the

popular PASCAL VOC 2007 dataset [Everingham et al., 2007, 2010]. The results can

be seen in Figure 2.8.

Initially, we observe that there is a significant performance gap between fully super-

vised and weakly supervised object detectors indicating that learning an object detector

without location annotation is a very difficult task. Moreover, we observe that the per-

formance of WSOL methods has significantly improved the last six years (from 14%

mAP of Siva and Xiang [2011] which is based on DPM detector to 35% mAP of Bilen

and Vedaldi [2016] which is based the deep VGG-16 CNN architecture. However, one

should always pay attention on the ratio between weakly supervised and fully super-

vised object detectors. Interestingly, we observe that this ratio has been growing slower

than the absolute value, and it is still only in the 60% range. Bilen and Vedaldi [2016]

and Kantorov et al. [2016] show a slightly improved ratio (62% and 66%) over the

previous CNN-based WSOL methods when they use the AlexNet architecture. How-

ever, the ratio goes down again to 56% when Bilen and Vedaldi [2016] use the deeper

VGG-16 CNN architecture.
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Figure 2.8: The mAP performance of weakly supervised object detectors on the test set of

PASCAL VOC 2007 (blue bars). For each method, we also provide the mAP performance of the

corresponding fully supervised object detector (blue and green bars). The weakly supervised

approaches produce lower quality detectors.

2.2.3 Multiple Instance Learning

WSOL is often conceptualized as Multiple Instance Learning (MIL) [Dietterich et al.,

1997; Nguyen et al., 2009; Deselaers et al., 2010; Blaschko et al., 2010; Siva and

Xiang, 2011; Russakovsky et al., 2012; Siva et al., 2012; Shi et al., 2013; Song et al.,

2014a,b; Bilen et al., 2014; Cinbis et al., 2014; Shi et al., 2015]. Each image is treated

as a bag of windows (instances). A negative image contains only negative instances.

A positive image contains at least one positive instance, mixed in with a majority of

negative ones. The goal is to find the true positive instances in the positive images

from which to learn a window classifier for the object class. This typically happens by

iteratively alternating between two steps (Figure 2.9):

(A) re-training the object detector given the current selection of positive instances

and

(B) re-localizing instances in the positive images using the current object detector.
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Figure 2.9: The MIL framework widely used on WSOL. It iteratively alternates between (A)

re-training the object detector given the current selection of positive instances and (B) re-

localizing instances in the positive images based on the current object detector.

Initialization. Often MIL training is initialized by taking large windows in the pos-

itive images that (nearly) cover the whole image. [Nguyen et al., 2009; Pandey and

Lazebnik, 2011; Russakovsky et al., 2012; Cinbis et al., 2014, 2016]. This simple ini-

tialization strategy often works quite well on WSOL. Even in difficult datasets, such as

PASCAL VOC 2007, a significant percentage of images contain big centered objects

(about 17% in PASCAL VOC 2007). This strategy ensures that the first detector at the

beginning of MIL is trained with some objects which are localized correctly. In liter-

ature there are also methods that use a clever way to initialize MIL [Siva and Xiang,

2011; Siva et al., 2012; Shi et al., 2013], by looking at the intra-class and inter-class

pairwise similarities [Siva and Xiang, 2011] or by selecting a window that maximizes

its distance to its nearest neighbor among windows from the set of the negative im-

ages [Siva et al., 2012].

Window space. As it is mentioned above, in MIL framework, each image is treated

as a bag of windows. Early efforts relied on the sliding window paradigm by using

a huge number of windows at all translations, scales and aspect ratios [Chum and

Zisserman, 2007; Nguyen et al., 2009; Pandey and Lazebnik, 2011]. This limited the
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methods to use certain classes of lightweight window classifiers, such as linear SVM

on top of HoG features [Dalal and Triggs, 2005] or DPM [Felzenszwalb et al., 2010].

After Alexe et al. [2010] proposed objectness, nearly all WSOL techniques [Deselaers

et al., 2010; Siva and Xiang, 2011; Russakovsky et al., 2012; Siva et al., 2012; Cinbis

et al., 2014; Song et al., 2014a; Bilen et al., 2014; Bilen and Vedaldi, 2016; Kantorov

et al., 2016] use only a small number of windows likely to cover all objects in the

image. Object proposals made the MIL framework for WSOL more manageable and

also possible to use more powerful and computational expensive models.

Re-localization. During the re-localization step (B) of MIL, the current object detector

is simply applied to every window of an image. A simple yet powerful strategy is

to select the window proposal with the highest detection score [Nguyen et al., 2009;

Russakovsky et al., 2012; Cinbis et al., 2014, 2016]. More sophisticated re-localization

strategies have also been devised, which combine the window detection score with

other terms, such as exploiting the similarity between the selected windows across

the positive images [Deselaers et al., 2010; Siva and Xiang, 2011; Bilen et al., 2015],

selecting windows with high distance from windows in the negative images [Siva et al.,

2012; Song et al., 2014a] or using more complex combinatorial criteria (e.g., min-cover

in Song et al. [2014a]).

Another common component of many successful WSOL methods during the re-

localization step [Deselaers et al., 2010; Siva and Xiang, 2011; Guillaumin and Fer-

rari, 2012; Prest et al., 2012; Shapovalova et al., 2012; Shi et al., 2012; Tang et al.,

2014; Wang et al., 2014a; Cinbis et al., 2016; Bilen and Vedaldi, 2016] is the use of an

objectness measure [Alexe et al., 2010; Zitnick and Dollár, 2014]. Typically, the de-

tection score given by the object detector is combined with the objectness score which

measures how likely it is that a proposal tightly encloses an object of any class (e.g.

bird, car, sheep), as opposed to background (e.g. sky, water, grass). This helps the lo-

calization process to steer towards objects and away from background. The first work

to introduce this idea was [Deselaers et al., 2010], using the original objectness mea-

sure of [Alexe et al., 2010]. Later works have used either that measure [Siva and Xiang,

2011; Guillaumin and Ferrari, 2012; Prest et al., 2012; Shapovalova et al., 2012; Shi

et al., 2012; Tang et al., 2014; Wang et al., 2014a; Jerripothula et al., 2016] or the more

modern version by Zitnick and Dollár [2014] [Cinbis et al., 2016; Bilen and Vedaldi,

2016]. In Sections 4.4, 5.4 of this thesis, we use the recent objectness measure of Zit-

nick and Dollár [2014].
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Re-training. During the re-training step (A) of MIL, various object detection models

has been used. Often, in earlier efforts [Chum and Zisserman, 2007; Nguyen et al.,

2009; Deselaers et al., 2010; Russakovsky et al., 2012; Cinbis et al., 2014], a simple

linear SVM is trained on standard hand-crafted features (such as HOG, Bag-of-words,

etc). The DPM detector [Felzenszwalb et al., 2010] has also been utilized in the same

manner Pandey and Lazebnik [2011]; Siva and Xiang [2011]; Siva et al. [2012, 2013].

Recent WSOL approaches use the powerful CNN features generated from a network

pre-trained on 1 million ILSVRC images with class labels [Russakovsky et al., 2015a]

and brought a massive improvement in performance [Bilen et al., 2014; Song et al.,

2014a,b; Bilen et al., 2015; Cinbis et al., 2016; Wang et al., 2015; Bilen and Vedaldi,

2016; Kantorov et al., 2016] (9 last bars of Figure 2.8).

In high dimensional feature space the discriminative SVM classifier can relatively

easily separate any positive examples from negative examples, which means that most

positive examples are far from the decision hyper-plane. Hence the same positive train-

ing examples used for re-training (A) are often re-localized in (B), leading to premature

locked-in behavior. To prevent this, Cinbis et al. [2014] introduced multi-fold MIL:

similar to cross-validation, the dataset is split into subsets, where the re-localization

on each subset is done using detectors trained on the union of all other subsets. In

Sections 4.4, 5.4, we adopt this multi-folding idea in our reference MIL approach.

2.2.4 Other approaches to WSOL

Non MIL. Some WSOL approaches differ from the widely used MIL framework.

Most of the approaches that fall in this category are early efforts [Fergus et al., 2003;

Crandall and Huttenlocher, 2006; Lee and Grauman, 2009]. Also, there are some

recent WSOL approaches [Shi et al., 2012; Wang et al., 2015; Bilen and Vedaldi, 2016;

Kantorov et al., 2016] that diverge from the MIL framework and we summarize them

below

Shi et al. [2012] formulates a Bayesian joint topic model on SIFT descriptors [Lowe,

2004] represented as visual words [Sivic and Zisserman, 2003b; Csurka et al., 2004b].

Each image is modeled as a distribution over object classes and background classes.

By jointly modeling all classes they can ensure that two objects cannot be at the same

location. Additionally, it allows sharing appearance models of the background classes.

Wang et al. [2015] select positive instances by measuring discriminativity. They

first cluster windows in positive images using pLSA [Hofmann, 2001]. For each clus-
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ter they create global image features using a Bag-of-Words encoding based on the N

windows for each image which are closest to the cluster. With each global image fea-

ture they perform whole-image classification. Finally, they select as positive instances

those in the cluster leading to the best whole-image classification.

Bilen and Vedaldi [2016] proposed an elegant weakly supervised deep CNN ar-

chitecture. The core difference of this technique to MIL framework is that there is

no outer loop around the detector training. All WSOL components are integrated in-

side the network which is trained in an end-to-end fashion. The windows are selected

by a dedicated parallel detection branch of the network, which is independent of the

recognition branch.

Kantorov et al. [2016] builds upon Bilen and Vedaldi [2016] and proposes a

context-aware CNN architecture that exploits contextual relation between a candidate

region and its surrounding regions that helps to refining the boundaries of the detected

objects.

Activation maps. Recently, a different line of work in the field of weakly supervised

object localization has been proposed [Simonyan et al., 2014; Oquab et al., 2015; Blot

et al., 2016; Sun et al., 2016; Zhou et al., 2016; Durand et al., 2017]. In contrast to

all the aforementioned WSOL approaches, these methods aim to predict only the x, y

position of objects, but not their full extent (bounding boxes).

Simonyan et al. [2014] proposed to extract class saliency maps from a CNN trained

for object classification and use them for WSOL. The idea is that these saliency maps

encode the location of the object of the given class in the image, and thus can be used

for object localisation.

Oquab et al. [2015] proposed a weakly supervised convolutional network for ob-

ject classification that relies only on image-level labels. They showed that this network

can learn from cluttered scenes containing multiple objects and successfully predict

approximate locations, but not full extents (bounding boxes) of objects. The network

outputs class activation maps for different objects. The activation maps are computed

by projecting the weights of the output layer of the network to the last convolutional

layers. The activation map is given by a weighted sum of the values of the feature map

at the last convolutional layer. An activation map for a particular class indicates the

discriminative image regions used by the CNN to identify that class. These maps are

interestingly consistent with the locations of objects in the input images. The approx-

imate location of an object is simply given by the maximal response of these output
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activation maps.

Zhou et al. [2016] built on Oquab et al. [2015] and proposed to apply global average

pooling instead of global max pooling to construct the activation maps. The idea is that

the use of average pooling encourages the network to identify the complete extent of

the object and not only one point of it.

2.3 Alternative ways to reduce annotation effort

In this section we discuss alternative types of supervision information that have been

utilized to reduce human annotation effort for training object detectors, such as training

object detectors from videos, transfer learning, or using other forms of supervision

such as text that naturally occurs near an image.

At this point it is worth mentioning that our proposed schemes presented in Chap-

ters 3, 4, 5, 6 provides different ways to reduce annotation effort which is complemen-

tary to all those below. Any of our schemes could potentially be integrated with some

of them for even greater savings.

Learning from videos. Training object class detectors from videos could bypass the

need for manual bounding boxes, as the motion of the objects facilitates their auto-

matic localization [Kalogeiton et al., 2016; Leistner et al., 2011; Prest et al., 2012;

Kumar Singh et al., 2016; Tang et al., 2013]. Leistner et al. [2011] use unlabeled

video data to improve the performance of classifiers for detection on images. They de-

tect moving objects in a video and use them. Prest et al. [2012] use weakly annotated

videos, they automatically produce spatio-temporal bounding boxes (tubes) of the ob-

jects in these videos and then they used them to train object detectors. Tang et al.

[2013] proposes another weakly supervised algorithm to generate spatio-temporal seg-

ments using video-level tags provided in on-line videos. Their goal is to generate video

data suitable for training object detectors for image challenges.

However, because of the domain adaptation problem Kalogeiton et al. [2016], when

tested on still images these detectors are still quite weak compared to ones trained on

manually annotated still images.

Transfer learning. An alternative direction is transfer learning, where a model for

a new class (target) is helped by labeled examples of related classes (source) Fei-Fei

et al. [2007]; Lampert et al. [2009]; Salakhutdinov et al. [2011]; Aytar and Zisserman

[2011, 2012]; Guillaumin and Ferrari [2012]; Kuettel et al. [2012]; Shi et al. [2012];
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Vezhnevets and Ferrari [2014]; Hoffman et al. [2014]; Rochan and Wang [2015]; Ui-

jlings et al. [2017]. These methods typically learn spatial location, appearance and

context information for a new class from bounding box annotations on examples of re-

lated classes [Guillaumin and Ferrari, 2012; Shi et al., 2012; Rochan and Wang, 2015;

Uijlings et al., 2017]. Kuettel et al. [2012] instead transfers segmentation masks from

the source to the target examples. Hoffman et al. [2014] proposed an algorithm that

transforms CNN from image classifier to an object detector without bounding-box an-

notated data using domain adaptation. Recently, Uijlings et al. [2017] showed that the

performance of a WSOL MIL framework can be massively increased by transferring

knowledge into it from object detectors trained on ground-truth bounding boxes on

examples of related classes.

Learning from text. Another line of work leverages text naturally occurring near

an image as a weak annotation for its contents, such as on web pages or news articles

newspapers [Berg et al., 2004; Duygulu et al., 2002; Gupta and Davis, 2008; Luo et al.,

2009] or even video scripts and subtitles [Everingham et al., 2006; Laptev et al., 2008;

Marszalek et al., 2009; Bojanowski et al., 2013]. This form of supervision has been

particularly successful for learning faces of specific people [Berg et al., 2004], in part

because excellent generic face detectors are already available [Viola et al., 2005].
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Figure 3.1: (Left) The standard approach to training an object detector, where all images in the

training set are manually annotated with bounding boxes. (Right) In our approach most of the

images are annotated only with human eye fixations (R f ix set). The key idea is to automatically

predict bounding boxes for the images in R f ix set given only their fixations. For this we first

train a model to infer the spatial support of objects from the fixations, on a small subset of

images annotated by both fixations and bounding boxes (Rbb+ f ix, only 7% of the images in our

experiments).

3.1 Introduction

As mentioned in Section 2.1.6, training an object class detector typically requires a

large set of images in which objects are manually annotated with bounding-boxes [Dalal

and Triggs, 2005; Everingham et al., 2010; Felzenszwalb et al., 2010; Wang et al.,

2013; Girshick et al., 2014; Girshick, 2015; Liu et al., 2016] (Figure 3.1). Bounding-

box annotation is time consuming and expensive. Su et al. [2012] report a 35s median

time to draw and verify a tight bounding-box during a large-scale annotation effort

for ImageNet by crowd-sourcing on Mechanical Turk (more details in Section 2.1.6).

Additionally, detailed annotation guidelines, annotator training based on these guide-

lines, and manual checking of the annotation are typically required [Everingham et al.,

2010; Su et al., 2012]. Annotating large sets of images is therefore an enormous un-

dertaking, which is typically supported by crowd sourcing [Russakovsky et al., 2015a;

Everingham et al., 2012; Lin et al., 2014].

In this chapter, we propose a novel approach to training object detectors which can

substantially reduce the time required to annotate images. Instead of carefully marking

every training image with accurate bounding boxes, our annotators only need to find

the target object in the image, look at it, and press a button. By tracking the eye move-

ments of the annotators while they perform this task, we obtain valuable information

about the position and size of the target object (Figure 3.1). Unlike bounding box an-

notation, our eye tracking task requires no annotation guidelines and can be carried out

by completely naive viewers. Furthermore, the task can be performed in a fraction of

the time it takes to draw a bounding box (about one second per image, Section 3.3).
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Eye movement behavior in scene viewing has been the subject of a large body

of research in cognitive science [Henderson, 2003]. Experimental results indicate

that human observers prefer to fixate objects, rather than the background of an im-

age [Einhäuser et al., 2008]. This tendency is particularly pronounced in visual search,

as finding an object typically requires fixating it [Wolfe and Horowitz, 2008]. This

strongly suggests that eye tracking data can be useful for training a system to auto-

matically localize objects. However, fixation data only provides a rough indication

of the spatial extent of an object: humans have a tendency to fixate the center of an

object [Nuthmann and Henderson, 2010], and within animate objects (humans and an-

imals), there is a strong preference for fixating faces [Judd et al., 2009]. Furthermore,

the eye movement record will include fixations on salient non-target objects, and oc-

casionally on the background.

Inspired by the above observations, we propose a technique for deriving a bounding

box covering the whole target object given the fixations on the image (Section 3.4). We

cast bounding box estimation as a figure-ground segmentation problem. We define a

model that takes human eye movement data as input and infers the spatial support of

the target object by labeling each pixel as either object or background. As the relation

between fixations and bounding boxes can be complex and vary between object classes,

we train our model from a small subset of images annotated with bounding boxes and

fixations. The subset is only a small fraction of the dataset we want to annotate (7%

of the images in our experiments). Once trained on this subset, we use our model

to derive bounding boxes from eye movement data for the whole dataset, which can

then be used to train any standard object class detector, such as the Deformable Parts

Model [Felzenszwalb et al., 2010] or any modern detector based on Convolutional

Neural Nets (CNNs), such as the Fast R-CNN detector [Girshick, 2015] or the Single

Shot MultiBox Detector (SSD) [Liu et al., 2016].

To test our hypothesis that eye tracking data can reduce the annotation effort re-

quired to train object class detectors, we collected eye tracking data for the com-

plete training set of ten objects classes from Pascal VOC 2012 [Everingham et al.,

2010, 2012] (6,270 images in total). Each image is annotated with the eye movement

record of five participants, whose task was to identify which object class was present

in the image (Section 3.3). This large-scale eye tracking dataset is publicly available

at groups.inf.ed.ac.uk/calvin/eyetrackdataset/.

We demonstrate through extensive experiments on this dataset that our segmenta-

tion model can produce accurate bounding boxes in about half the images, and that
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a DPM object detector [Felzenszwalb et al., 2010] can be trained from them (Sec-

tion 3.5).

3.2 Related Work

The work of this Chapter is related to work reducing annotation time for training object

detectors. More details about WSOL or other ways to reduce annotation effort for

training object class detectors can be found in Section 2.2, 2.3. In this Section we

focus on related work that use eye tracking data in computer vision.

Researchers in cognitive science have a long-standing interest in computational

models that predict human eye movement behavior (e.g. [Itti et al., 1998; Harel et al.,

2007; Judd et al., 2009; Jiang et al., 2015; Liu et al., 2015; Kruthiventi et al., 2017]).

For example, Judd et al. [2009] learn a model of saliency directly from human fixations

using low, mid and high-level image features.

Recently, however, some authors have started to use eye movement data for com-

puter vision tasks. This includes work on image segmentation, which shows that using

fixation data to help segmentation algorithms leads to improved performance [Mishra

et al., 2009; Ramanathan et al., 2010; Walber et al., 2013]. In Mishra et al. [2009],

given a fixation used as seed point, their active image segmentation approach tries

to automatically segment the region that contains this fixation point. In Ramanathan

et al. [2010], they exploit the clustering of fixations around a salient object in order to

automatically generate the fixation seed for the active image segmentation.

Eye tracking data has also been used for face and text detection [Karthikeyan et al.,

2013]. Their approach spatially clusters the human fixations in an image in order to

find regions of interests in which the targets are likely to be found, and then apply

standard face and text detectors only there. Their results show that their gaze enable

approach produces better results and reduces the computation time compared to the

standard object detection algorithms. Several authors have collected eye tracking data

for video and shown that saliency maps computed from these data can improve action

recognition [Mathe and Sminchisescu, 2012; Vig et al., 2012].

Yun et al. [2013] collect eye movement data for a 1,000 image subset of Pascal

VOC 2008; three observers performed a three second free-viewing task. This data is

then used to re-rank the output of an object class detector [Felzenszwalb et al., 2010]

on test images. Our dataset is substantially larger (6,270 images, 5 observers), and

our observers perform a visual search task, which is faster (one second per image) and
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Figure 3.2: Examples of eye tracking data for images of class motorbike, dig and horse. We

show the sequence of fixations (circles) for five participants (color coded). Note how the first

fixation falls outside the image (see main text for details).

more likely to result in fixations on the target objects (Section 3.3). Most importantly,

we present a method for using eye tracking data to train an object class detector, re-

placing ground-truth bounding-boxes, rather than using them for post-processing at

test time.

3.3 Eye Tracking Dataset

3.3.1 Materials

The images in our dataset were taken from the 2012 edition of the Pascal VOC chal-

lenge [Everingham et al., 2012]. We selected 10 of the 20 Pascal classes and included

all trainval images for these classes in our dataset. We grouped our 10 classes into pairs

as follows (see below for explanation): cat/dog, bicycle/motorbike, boat/aeroplane,

horse/cow, sofa/diningtable. For each pair of classes, we removed all images that con-

tained objects of both classes (e.g. images containing both horses and cows). This

eliminated 91 images, or 1.4% of total, and resulted in a dataset containing 6,270 im-

ages.
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3.3.2 Procedure

As explained in Section 3.2, results in the visual cognition literature indicate that free

viewing may not be the optimal task for collecting eye tracking data for training au-

tomatic object detectors. A visual search task, in contrast, increases the likelihood

that participants fixate the target object, as this facilitates finding the target and help

complete the task correctly.

However, traditional visual search tasks require a large number of target-absent

trials. For example, if the task is to search for horses (the participants presses a “yes”

button if a horse is present in the image, and “no” otherwise), then the set of images

shown to the participant needs to contain images without horses (typically 50%, to

minimize guessing). Such a setup would mean that eye tracking data is collected for a

large number of target-absent images, which then cannot be used to train a detector.

We therefore used the related task of two-alternative forced choice object discrim-

ination, in which each image contains instances of one of two object classes (e.g. cow

or horse), and participants have to press one of two buttons to indicate which class is

present. This way, visual search data can be collected for two classes at a time, without

the need for target-absent images. In adopting this approach, we paired object classes

carefully, such that the two sets of images were similar in size (to minimize guessing),

and such that the objects were easily confusable (similar size and background, etc.), as

otherwise the task is too easy for human observers.

3.3.3 Apparatus

The experiment was conducted in a sound-attenuated room; participants were seated

60 cm from a 22” LCD screen (Samsung SyncMaster 2233, 100 Hz refresh rate, 5 ms

response time) while their eye movements were recorded using an Eyelink 2000 eye

tracker (SR Research Ltd., Ottawa), which sampled both eyes at a rate of 1,000 Hz,

with a typical spatial resolution of 0.25� to 0.5�. A head rest was used to minimize

participants head movements and improve recording accuracy. Button presses were

recorded using a Logitech gamepad that offers millisecond accuracy.

The experiment was controlled using Psychophysics Toolbox Version 3 [Brainard,

1997]. Data collection started with a standard nine-point calibration and validation. As

explained below, participants viewed images blocked by pairs of classes; the images

within a block were presented in random order (a new sequence was generated for each

participant). Each trial started with a central fixation cross, displayed for 500 ms, after
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which the image was displayed. The participant’s task was to press one of the two

response buttons to indicate the class to which the object(s) in the image belonged,

after which the next trial was started automatically. Drift correction was performed

after every 20 images; re-calibration was performed if the correction showed that this

was necessary (after approximately every 200 images). Participants were offered a five

minute break every 30 minutes.

The images in the Pascal dataset differ in size, and they are all smaller than the

screen resolution used for the experiment (1,680 ⇥ 1,050 pixels). Instead of re-scaling

the images to this resolution (which would result in visual artifacts and make the task

unnatural), we presented the images in their original size, but at random offset from

the center of the screen. This has the advantage that participants cannot easily develop

a viewing strategy (e.g. always looking at the center of the screen, looking in the upper

half), thus ensuring that we obtain maximally informative eye movement data.

3.3.4 Participants

A total of 28 participants (11 male) took part in the data collection, all students at the

University of Edinburgh. They gave informed consent and were paid £10 per hour.

The materials were divided into seven blocks of around 1,000 images each, where

each block contained of all the images in one pair of classes, except for one large pairs

of classes (cat/dog), which was split across three blocks. Each participant saw all the

images in one block, except for five participants, who saw between two and four blocks

in multiple sessions. Blocks were distributed across participants such that every image

in every block was seen by five distinct participants.

3.3.5 Results

A total of around 178,000 fixations were collected, corresponding a mean of 5.7 fixa-

tions per participant per image. For example images with fixations superimposed, see

Figure 3.2. Note that we removed the first fixation of each trial, as it almost always

falls on the location of the fixation cross, and thus is uninformative (as well as often

being outside the image, due to the off-center presentation).

The mean response time per image (the time from the onset of the image to the but-

ton press) was 889 ms, ranging from 786 ms for cat 1090 ms for cow. This indicates

that the task can be performed very efficiently by human observers, especially com-

pared to the 35 seconds reported in Su et al. [2012] as the time required to draw and
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Figure 3.3: Illustration of our method for predicting bounding-boxes from fixations. See Sec-

tion 3.4.

verify a tight bounding box. Participants were nevertheless highly accurate at the task,

with a mean discrimination accuracy (percentage of correct button presses) of 95.2%,

ranging from 92.9% for sofa/diningtable to 96.1% for boat/aeroplane.

We then compared the positions of the human fixations with the locations of the

ground-truth bounding-boxes provided with the Pascal dataset. On average, 75.2% of

all fixations on an image fell within one of the bounding-boxes for that image, ranging

from 57.3% for boat to 89.6% for cat. This provides initial evidence of our claim

that fixation data is useful for localizing objects, though it also indicates that there is

considerable inter-class variability in fixation behavior.

3.4 From fixations to bounding-boxes

We present here our method for localizing objects in an image given fixations (Fig-

ure 3.1). We model this problem as figure-ground segmentation. Our model takes as

input human right eye and left eye fixations F for an image I in R f ix and infers the

spatial support of the object by labeling each pixel as either object or background. The

method has two stages (Figure 3.3):

I) Initial object segmentation (Section 3.4.1) The first stage predicts an initial es-

timate of the object position by labeling each (super-)pixel individually. This pre-

dictor captures the relation between fixations and object positions. It is trained

on the image set Rbb+ f ix, which is annotated with both fixations and manual
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bounding-boxes. The output of this stage is a values for each pixel of I that

corresponds to the probability to be on the object.

II) Segmentation refinement (Section 3.4.2). The second stage refines the segmen-

tation with an energy model similar to GrabCut [Rother et al., 2004]. This in-

cludes pairwise dependencies between neighboring superpixels, acting as a prior

preferring spatially smooth segmentations.

3.4.1 Initial object segmentation

We describe here the first stage of deriving object segmentations from fixations. We

use an SVM to classify superpixels into object or background based on a diverse set

of features computed from the fixations, such as the distance between a superpixel and

the nearest available fixation. Before the classifier is ready to label superpixels in a

new image, we train it on the set Rbb+ f ix. In this fashion it can learn a relation between

fixations and object positions specific for that object class (i.e. the relation between

these features and the fact that a superpixel is on the object or not). After training, the

classifier is applied to each image I 2 R f ix, resulting in a soft segmentation mask M

(Figure 3.3). Each pixel value in M corresponds to the estimated probability for it to

be on the object.

Features. We start by over-segmenting each image I into superpixels S using the

Turbopixels method [Levinshtein et al., 2009]. Operating at the superpixel level greatly

reduces the computational cost and memory requirements of our technique.

Let F be the set of fixations in the image. Each fixation is determined by four

values: the (x,y) position, the duration and the rank of the fixation in chronological

order.

Fixation position features. As mentioned in Section 3.3, we acquired fixations under

a visual search task instead of the usual free-viewing task to increase the proportion of

fixations on (or near) the target object. Therefore, the position of the fixations directly

relates to the position of the object. This motivates us to construct good features indi-

cating whether a superpixel s lies inside the object based on its position relative to the

fixations (Figure 3.5a):

• mean distance: the distance between the center of s and the mean position of all

fixations in the image.
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(a) (b) (c) (d) (e)

Figure 3.4: (a) The positions of the fixations in the image. (b) The near distance feature. (c)

The rank feature. (d) The appearance feature according to the distance of the nearest fixation.

(e) The objectness feature.

• near distance: the distance between the center of s and the position of the fixa-

tion nearest to s (Figure 3.4b).

• mean offsets: the vertical and horizontal difference between the center of s and

the mean position of all fixations in the image.

• near offsets: the vertical and horizontal difference between the center of s and

the position of the fixation nearest to s.

Fixation timing features. In addition to the position of each fixation, the eye tracker

also delivers timing information, such as the duration and rank of each fixation. These

properties carry valuable information. Intuitively, the longer a fixation lasts, the more

significant it is. Moreover, in most images the first few fixations will not fall on the

target object yet, as the annotator is searching for it, while later fixations are likely to

be on the target (Figure 3.4c).

• duration: the duration of the fixation nearest to s.

• rank: the rank of the fixation nearest to s.

Fixation appearance features. The features considered so far support learning a fixed

spatial relation between the fixations and the superpixels on the object. For example,

we could learn that superpixels within a certain distance of the nearest fixation are

likely to be on the object. Or we could learn that most of the object mass is below the

mean fixation position (e.g. for the person class, as faces receive most fixations).

However, in images of natural objects this spatial relation might change from im-

age to image and therefore might be hard to recover when reasoning about image

coordinates alone. For instance, animals can appear in a wide range of viewpoint and
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deformations, but viewers tend to fixate mostly their heads. This makes it difficult to

guess the full extent of their body based purely on the fixation positions.

Here we consider another family of features based on the appearance of superpix-

els (i.e. their color distribution). The RGB color of a superpixel is computed as the

average color of the constituent pixels. The key idea is that, while the fixations do not

cover the whole object, many of them are on the object, and so provide examples of

how it looks. Hence, we can learn about object appearance from a few superpixels hit

by fixations. Analogously, we can learn about background appearance from superpix-

els far from fixations. We can then transfer this knowledge to all superpixels in the

image. For example we might find out that a horse is brown and the background is

green, even from just a few fixations, and use this knowledge to segment out the whole

horse (Figure 3.1). Note that this idea works regardless of the spatial relation between

the shape and size of the horse in the image and the fixation positions. It effectively

creates a mapping from fixation to segmentations that adapts to the contents of the

target image.

More precisely, we estimate two Gaussian Mixture Models (GMM), one for the

object and one for the background. Each GMM has 5 components, each of which is a

full-covariance Gaussian over the RGB color space. We estimate the object GMM Aob j

from all pixels inside all superpixels hit by any fixation, as these are likely on the object

(Figure 3.5b). Selecting background sample pixels is harder as the converse relation

does not hold: the fact that a superpixel is not hit by any fixation does not reveal

much about it being on the background or the object (in fact nearly all superpixels

are not hit by a fixation, as fixations are extremely sparse). Therefore, we sample

superpixels according to three criteria, leading to three different background GMM

models Abg, and we leave it to the learner to decide how to best weight them: (1)

sample proportionally to the distance to the mean fixation, resulting in many samples

far from the mean fixation and less and less samples as we get nearer; (2) sample

proportionally to the distance to the nearest fixation. This is simply an alternative way

to express ‘far from the expected object location’; (3) sample inversely proportionally

to the objectness probability (see next paragraph).

After estimating the appearance models Aob j,Abg, we use them to evaluate ev-

ery superpixel s in the image, resulting in per-pixel likelihoods of object/background

p(s|ob j) =Aob j(s), p(s|bg) =Abg(s). We combine these likelihoods in a per-pixel pos-

terior probability of being on the object with Bayes’ formula under a uniform prior:

p(ob j|s) = p(s|ob j)/(p(s|ob j)+ p(s|bg)) (Figure 3.4d). We compute three different
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(a) (b)

Figure 3.5: Feature extraction. (a) Fixation position features. The yellow circles indicate the

positions of the fixations in the image, while the red circle indicates the mean position of all fix-

ations. The figure shows the distances from a superpixel center (red cross) that are required to

compute all the feature position features. (b) Selecting foreground and background superpixels

to estimate appearance models for the fixation appearance features. The selected foreground

superpixels are indicated in red, while the sampled background superpixels according to the

distance from the nearest fixation are in green.

posteriors, by using each of the three background models in turn, resulting in three

appearance features for each super-pixel.

Objectness feature. As an additional feature, we incorporate the objectness mea-

sure [Alexe et al., 2010]. Objectness estimates the probability that an image window

contains an object of any class. It is designed to distinguish windows containing an

object with a well defined boundary and center, such as cows and telephones, from

amorphous background windows, such as grass and road. It measures distinctive char-

acteristics of objects, such as appearing different from their surroundings, having a

closed boundary, and sometimes being unique within the image.

We sample 1,000 windows using Alexe et al. [2010] according to their probability

of containing an object. Then we convert this measure to per-superpixel probabilities

by averaging the objectness value over all windows covering a super-pixel. This ob-

jectness feature helps by pushing the segmentation method towards objects and away

from backgrounds (Figure 3.4e).

Training a superpixel classifier. We train a separate classifier for each object class, as

the relation between fixations and objects can be complex and vary between classes. As
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training samples we use the feature vectors of all superpixels from the Rbb+ f ix images

of a class (Figure 3.3). Each superpixel is labeled according to whether it is inside a

ground-truth bounding-box or not. After whitening the features, we train a linear SVM

with the very efficient implementation of Vedaldi and Fulkerson [2008] on a random

80% subset of the training data. We set the regularization parameter C by validation

on a held-out 10% of the data, and then re-train the SVM on the total 90% of the data.

In order to get a smooth, probabilistic output we apply Platt scaling [Platt, 1999] and

fit a sigmoid to the output of the SVM on the remaining 10% of the training data.

Applying the classifier to a new image I 2 R f ix yields a soft-segmentation mask M

where each pixel value corresponds to the estimated probability of being on the target

object. This is the output of the first stage of our method.

3.4.2 Segmentation refinement

We describe here the second stage of deriving object segmentations from fixations.

This refines the soft-segmentation M output by the first stage by taking into account

pairwise dependencies between neighboring superpixels and by improving the appear-

ance models.

Let ls 2 {0,1} be the label for superpixel s and L be the labeling of all ls in the

image. We employ a binary pairwise energy function E defined over the superpixels

and their labels, analog to Kuettel and Ferrari [2012]; Rother et al. [2004]:

E(L) = Â
s

Ms(ls)+Â
s

As(ls)+Â
s,r

V (ls, lr) (3.1)

As in Kuettel and Ferrari [2012]; Rother et al. [2004], the pairwise potential V

encourages smoothness by penalizing neighboring pixels taking different labels. The

penalty depends on the color contrast between the pixels, being smaller in regions

of high contrast (image edges). The summation over (s,r) is defined on an eight-

connected pixel grid.

The linear combination of the two unary potentials As and Ms evaluate how likely a

superpixel s is to take label ls according to an appearance model and a location model.

Because of the probabilistic nature of the soft segmentation mask M, we can use

Ms(ls) = M(s)ls(1�M(s))1�ls as a unary potential (with Ms the value of the mask at

superpixel s). As Ms estimates the probability that superpixel s is on the object, this

potential encourages the final segmentation to be close to M (see Kuettel and Ferrari
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[2012]). This anchors the segmentation to image regions likely to contain the target

object, while letting this second stage refine its exact delineation.

The second unary potential As evaluates how likely a superpixel s is to take label

ls, according to object and background appearance models. As in the classic Grab-

Cut [Rother et al., 2004], an appearance model consists of two GMMs, one for the

object (used when ls = 1) and one for the background (used when ls = 0). Each GMM

has five components, each a full-covariance Gaussian over the RGB color space.

In traditional work using similar energy models [Blake et al., 2004; Rother et al.,

2004; Wang and Cohen, 2005], estimating the appearance models requires user inter-

action to indicate the image region containing the object (typically a manually drawn

bounding-box or scribbles). Recently, Kuettel and Ferrari [2012] proposed to auto-

matically estimate the appearance models from a soft segmentation mask produced by

transferring segmentations from manually annotated images in a training set. Inspired

by that idea, we estimate our appearance models from the mask M obtained from fixa-

tions in Section 3.4.1 (so our method does not require training segmentations).

After this initial estimation, we follow Rother et al. [2004] and alternate between

finding the optimal segmentation L given the appearance models, and updating the

appearance models given the segmentation. The first step is solved globally optimally

by minimizing (3.1) using graph-cuts [Boykov and Kolmogorov, 2004] as our pairwise

potentials are submodular. The second step fits GMMs to labeled superpixels. Defining

the energy over superpixels [Guillaumin et al., 2014; Ladicky et al., 2009; Veksler

et al., 2010] instead of pixels brings great memory savings and reduces the cost to

optimize over L. As demonstrated in Guillaumin et al. [2014], the accuracy of the

superpixel model is essentially identical to the corresponding pixel model.

The final output of our method is a bounding-box enclosing the largest connected

component in the segmentation (Figure 3.3).

3.5 Experiments

We carry out experiments on the challenging Pascal VOC 2012 benchmark [Evering-

ham et al., 2012]. We first evaluate the ability of our method to derive object bounding-

boxes from fixations on the trainval part of the dataset (Section 3.5.1). Next, we train

the object class detector of Felzenszwalb et al. [2010] from these bounding-boxes and

compare its performance on the test set to the original model trained from ground-truth

bounding-boxes (Section 3.5.2).
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Figure 3.6: CorLoc performance for the baselines (blue bars) and several stripped down ver-

sions of our model (green+red) bars. The height of the green bars indicate the performance of

the initial segmentation method (i) using only position and timing features, (ii) adding appear-

ance features, (iii) adding the objectness feature, and (iv) using all features and fixations from

5 annotators (the previous three bars use only 2 annotators). The height of the red bars show

the improvement brought by the refinement stage.

3.5.1 From fixations to bounding-boxes

Data. We consider 10 classes from Pascal VOC 2012, for a total of 6,270 images in the

trainval part (see Section 3.3.1 for a list of classes). We split each class into two subsets

Rbb+ f ix and R f ix. We use both ground-truth bounding-boxes and human fixations from

the set Rbb+ f ix to train our segmentation model. This subset contains only 7% of all

trainval images. This fraction was chosen so that each class has � 20 images. On

average, each class has only 44 images. After training, we use our model to predict

bounding-boxes for images in the R f ix set, which are annotated only by fixations.

Evaluation measure. We report performance as CorLoc [Deselaers et al., 2010], i.e.

the percentage of images in R f ix where a method correctly localizes an object of the

target class according to the PASCAL criterion [Everingham et al., 2010] (intersection-

over-union � 0.5). This measure is commonly used in WSOL [Deselaers et al., 2010;

Pandey and Lazebnik, 2011; Siva and Xiang, 2011; Deselaers et al., 2012; Russakovsky

et al., 2012; Siva et al., 2012; Shi et al., 2013; Bilen et al., 2014; Cinbis et al., 2014; Shi

et al., 2015; Cinbis et al., 2016; Wang et al., 2015; Bilen and Vedaldi, 2016; Kantorov

et al., 2016].

As most previous WSOL methods [Deselaers et al., 2010; Pandey and Lazebnik,

2011; Siva and Xiang, 2011; Deselaers et al., 2012; Russakovsky et al., 2012; Siva

et al., 2012; Shi et al., 2013; Bilen et al., 2014; Cinbis et al., 2014; Shi et al., 2015;

Cinbis et al., 2016; Wang et al., 2015; Bilen and Vedaldi, 2016; Kantorov et al., 2016],

our scheme returns exactly one bounding box per class per image in R f ix. This enables
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clean comparisons in terms of CorLoc on this set, and keeps the eye tracking task sim-

ple. If multiple instances of the same class appeared in an image, different users may

fixate of different instances. It is worth noting that our model is able to detect one of

them (i.e., by fitting a bounding box around the largest connecting component. Finding

all connected components in the output mask and fitting a bounding box around each

of them could enable us to evaluate the ability of our method to detect multiple objects

per image.

Baselines. In Figure 3.6 we evaluate several informative baselines: (1) image center:
a window in the image center with area set to the average over the object bounding-

boxes in the Rbb+ f ix set. This baseline provides an indication of the difficulty of the

dataset; (2) all fixations: a bounding-box around all fixations; (3) objectness: the

window with the highest objectness probability, out of 1000 sampled using Alexe et al.

[2010]; (4) DPM: the highest scored detection returned by a Deformable Parts Model

detector Felzenszwalb et al. [2010] trained on the Rbb+ f ix set; (5) regression: linear

regression from the mean and variance of the fixation positions to a bounding-box.

This models the spatial relation between the cloud of fixations and the object with a

single translation and anisotropic scaling transformation, constant across all images of

a class.

As Figure 3.6 shows, the image center baseline achieves 33.2% CorLoc, confirm-

ing the dataset contains mostly images with smaller, often off-center objects. Inter-

estingly, all fixations fails entirely, demonstrating that the task of deriving bounding-

boxes from fixations is far from trivial. Regression does much better, finding the object

in 35.6% of the images. This highlights the need for learning the relation between fix-

ations and bounding-boxes. Note how Objectness also performs quite well (35.0%).

It can find some objects even when used on its own, confirming observations made by

earlier research [Guillaumin and Ferrari, 2012]. As regression and objectness incor-

porate elements of our full method, they set the standards to beat. Finally, the DPM

baseline reaches only 34.0% CorLoc, showing that the problem cannot be solved sim-

ply by training an object detector on the small fully annotated set Rbb+ f ix.

Results. Figure 3.6 shows the CorLoc achieved by several stripped down version of

our model. We study the impact of using increasingly more features (Section 3.4.1),

and the difference between using only the initial segmentation stage (Section 3.4.1) or

also the segmentation refinement stage (Section 3.4.2). To quantify the performance

of the initial segmentation stage, we threshold the soft-segmentation mask M and fit a
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bounding-box around the largest segment. The threshold is optimized on the training

set Rbb+ f ix.

The results reveal several interesting observations: (1) all feature types we propose

contribute to the overall performance of the full model, as adding each type in turn

progressively leads to higher CorLoc; (2) with 49.6% CorLoc, our full model signifi-

cantly outperforms all baselines, including regression and objectness. This shows that

it can learn better, more complex relations between the fixations and the object’s spatial

extent than the regression baseline. It also shows that, while objectness is a valuable

cue to the position of objects, our model goes well beyond it; (3) the segmentation

refinement stage always helps, adding between 3% and 6% CorLoc depending on the

features used in the initial segmentation stage.

As a reference, the weakly supervised method of Siva et al. [2013], which produces

bounding-boxes on a set of images labeled only as containing a class, achieves 32%

in a similar setting on PASCAL VOC 2007 (which is a dataset of similar difficulty).

This method was the state of the WSOL at the submission time of our ECCV 2014

paper [Papadopoulos et al., 2014], where we published the research covered in this

chapter. The current state-of-the-art WSOL method of Bilen and Vedaldi [2016] on

PASCAL VOC 2007 achieves 54.2% CorLoc with a single CNN model. It is impor-

tant to note that our work provides a different way to reduce annotation effort which

is complementary to other WSOL techniques (Section 2.2). It could potentially be

integrated with some of them for even greater savings. To demonstrate this point, in

Section 5.6 we present a method that incorporates eye tracking data into a standard

WSOL framework and achieves a significant improvement over WSOL with a modest

extra annotation cost.

Our results discussed above used fixations from just two annotators. This is an

especially economical annotation scenario, as it takes only a total of about two seconds

to annotate an object, substantially less than the 35 seconds it takes to draw a bounding-

box Su et al. [2012]. However, as we collected fixations from five annotators per image

(Section 3.3), for completeness we report also the performance of our model when

using all annotators (rightmost bar in Figure 3.6). As performance improves only

marginally, we conclude that our model efficiently exploits the information provided

by two annotators, and keep this as the default setting in the next experiment. At this

point we should note that in our model we simply use all the right and left eye fixations

of each annotator independently as the set of fixations F and we do not average or

discard any of them.
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Figure 3.7: Qualitative results of our method for localizing objects given fixations. The fixa-

tions of two different annotators are indicated with yellow circles while the predicted bounding-

boxes are in green. Successful examples are shown in the first four rows for various classes,

while some failure cases are shown in the last row. Note how our method nicely outputs a

bounding-box covering the whole object even when the fixations are concentrated on only part

of it, often the center, or the head.

3.5.2 Training object class detectors from fixations

Settings. In the previous subsection we automatically derived bounding-boxes from

fixations for the R f ix part of the Pascal VOC 2012 trainval set (i.e. 93% of the total).

Here we use these predicted bounding-boxes, along with the 7% images in Rbb+ f ix with

ground-truth bounding-boxes, to train a DPM detector [Felzenszwalb et al., 2010]. Fol-
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All ground-truth All predicted 7.8⇥ fewer

bounding boxes bounding boxes ground-truth boxes

DPM 25.5 12.5 13.1

Table 3.1: The mAP performance of DPM detectors on the test set of PASCAL VOC 2012

dataset using different types of box annotations.

lowing the standard Pascal VOC protocol, the negative training set for a class contains

all trainval images not containing that class. After training, the detectors are applied to

the Pascal VOC 2012 test set (10,991 images). Performance is quantified by the mean

average precision (mAP) over all 10 classes, as returned by the Pascal VOC evaluation

server. We compare performance to detectors trained from exactly the same images,

but all annotated with ground-truth bounding-boxes.

Results. The mAP of DPM detectors trained from bounding boxes derived by our

method is 12.5%, compared to 25.5% for the detectors trained from ground-truth

bounding boxes. We consider this an encouraging result, given that our scenario en-

ables to train these detectors in 7.8⇥ less total annotation time compared to drawing

bounding boxes on all images. This estimate takes into account all relevant factors,

i.e. two annotators per image at one second per image, the extra time of displaying

the fixations cross preceding every image (500ms), the time to set up and calibrate the

eye tracker, breaks between blocks of images, and the time to draw bounding-boxes on

the 7% images in Rbb+ f ix. Interestingly, training DPMs from ground-truth bounding-

boxes for a 7.8⇥ smaller training set leads to comparable performance as our method

(13.1%).

3.6 Conclusions

We have presented a novel approach to train object detectors. Instead of the traditional,

time consuming manual bounding-box annotation protocol, we proposed to learn the

detector from eye movement data recorded while annotators simply look for the object

in the training images. We proposed a technique to successfully derive object bounding

boxes from such eye movement data and demonstrated that they can be used to train

an object class detector [Felzenszwalb et al., 2010]. In its current form, when given

equal total annotation time, our scheme leads to detectors that are about as good as

those trained from manual bounding-box annotations.
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We found out that our visual search task can be performed very efficiently (0.9 sec-

onds per image per annotator) and in fact this time 19⇥ faster than the time required

to draw a bounding box [Su et al., 2012] if we consider using fixations from two anno-

tators. However, our scheme has some disadvantages that increase the total annotation

time. Most of the annotation time of our scheme (43%) is spent on manually anno-

tating the bounding boxes on the small Rbb+ f ix set. As mentioned in this chapter, we

use this set to learn the relation between fixations and bounding boxes. Note that the

actual time of the visual search task is only the 30% of the total annotation time of our

scheme. The rest 27% of the time is spend on setting up the experiment, calibrating

the eye tracker and looking at the fixation cross preceding every image (500ms).

Another limitation of this scheme is that currently it is quite difficult to crowd-

source eye tracking data, which is essential for building a very large scale dataset.

Very cheap eye trackers are right now available but the task requires the annotators to

have access to this special equipment. Being able to track accurately eye movements

with conventional web cameras could bypass this problem and make crowd-sourcing

viable for eye tracking data [Skovsgaard et al., 2013; Xiao et al., 2015; Xu et al., 2015;

Wood et al., 2015; Krafka et al., 2016; Papoutsaki et al., 2016]

For all these reasons, in the following chapters of this thesis, we introduce ideas

leading to annotation schemes that do not require any manually drawn bounding boxes

or any special equipment (e.g., eye tracker). This leads to even greater savings in

annotation time and more importantly, our schemes presented in Chapters 4, 5 lead to

detectors that perform in a range close to those trained from manually drawn bounding

boxes.
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4.1 Introduction

In the previous chapter we proposed a scheme for learning object detectors with eye

tracking data. Our scheme was very efficient and we demonstrated that we can success-

fully derive object bounding boxes from eye movement data. However, as discussed

in Section 3.6, it has some disadvantages: it requires drawing manually bounding box

in a small set of images and it demands special equipment (eye tracker) that makes it

unfeasible to crowd-source these kind of annotation data.

In this chapter, we propose another efficient annotation scheme which only requires

humans to verify bounding boxes produced automatically by the learning algorithm:

the annotator merely needs to decide whether a bounding box is correct or not. Cru-

cially, answering this verification question takes much less time than actually drawing

the bounding box. More importantly, this scheme overcomes the disadvantages of the

eye tracking scheme as it eliminates the need to draw any bounding box and these

human verifications are easily crowdsourceable.

Given a set of training images with image-level labels, our scheme iteratively alter-

nates between updating object detectors, re-localizing objects in the training images,

and querying humans for verification. At each iteration we use the verification signal

in two ways. First, we update the object class detector using only positively verified

bounding boxes. This makes it stronger than when using all detected bounding boxes,

as it is commonly done in the weakly supervised setting, because typically many of

them are incorrect. Moreover, once the object location in an image has been posi-

tively verified, it can be fixed and removed from consideration in subsequent iterations.

Second, we observe that bounding boxes judged as incorrect still provide valuable in-

formation about where the object is not. Building on this observation, we use the

negatively verified bounding boxes to reduce the search space of possible object loca-

tions in subsequent iterations. Both these points help to rapidly find more objects in

the remaining images. This results in a framework for training object detectors which

minimizes human annotation effort and eliminates the need to draw any bounding box.

In extensive experiments on the popular PASCAL VOC 2007 dataset [Everingham
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Figure 4.1: Our framework iterates between (A) re-training object detectors, (B) re-localizing

objects, and (C) querying annotators for verification. The verification signal resulting from (C)

is used in both (A) and (B).

et al., 2010] with both simulated annotators, expect annotators and annotators in Ama-

zon Mechanical Turk (AMT), we show that: (1) using human verification to update

detectors and reduce the search space leads to rapid production of high-quality bound-

ing box annotations; (2) our scheme delivers object class detectors performing almost

as well as those trained in a fully supervised setting, without ever drawing any bound-

ing box; (3) as the verification task is very quick, our scheme substantially reduces

total annotation time by 8⇥.

4.2 Related Work

The work of this Chapter is related to work reducing annotation time for training object

detectors. More details about WSOL or other ways to reduce annotation effort for

training object class detectors can be found in Section 2.2, 2.3. We focus here on

human in the loop and active learning approaches that were not covered in Chapter 2.

4.2.1 Humans in the loop

Human-machine collaboration approaches have been successfully used in tasks that

are currently too difficult to be solved by computer vision alone, such as fine-grained

visual recognition [Branson et al., 2010; Deng et al., 2013; Wah et al., 2011, 2014],

semi-supervised clustering [Lad and Parikh, 2014], attribute-based image classifica-

tion [Biswas and Parikh, 2013; Parikh and Grauman, 2011; Parkash and Parikh, 2012].

These approaches combine the responses of pre-trained computer vision models on
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a new test image with human input to fully solve the task. In the domain of object

detection, Russakovsky et al. [2015b] propose such a scheme to fully detect all ob-

jects in images of complex scenes. Importantly, their object detectors are pre-trained

on bounding-boxes from the large training set of ILSVRC 2014 [Russakovsky et al.,

2015a], as their goal is not to make an efficient training scheme.

4.2.2 Active learning

Active learning schemes iteratively train models while requesting humans to annotate a

subset of the data points actively selected by the learner as being the most informative.

Previous active learning work has mainly focused on image classification [Joshi et al.,

2009; Kapoor et al., 2007; Kovashka et al., 2011; Qi et al., 2008], and free-form region

labeling [Siddiquie and Gupta, 2010; Vijayanarasimhan and Grauman, 2008, 2009].

A few researchers have proposed active learning schemes specifically for training

object class detectors [Vijayanarasimhan and Grauman, 2014; Yao et al., 2012]. Vi-

jayanarasimhan and Grauman [2014] propose an approach where the training images

do not come from a predefined dataset but are crawled from the web. Here annota-

tors are asked to draw many bounding-boxes around the target objects (about one third

of the training images [Vijayanarasimhan and Grauman, 2014]). Yao et al. [2012]

propose to manually correct bounding-boxes detected in video. While both Vijaya-

narasimhan and Grauman [2014]; Yao et al. [2012] produce high quality detectors,

they achieve only moderate gains in annotation time, because drawing or correcting

bounding-boxes is expensive. In contrast, our scheme only asks annotators to verify

bounding-boxes, never to draw. This leads to more substantial reductions in annotation

time.

4.3 Method

In this chapter we are given a training set with image-level labels. Our goal is to

obtain object instances annotated by bounding-boxes and to train good object detectors

while minimizing human annotation effort. We therefore propose a framework where

annotators only need to verify bounding-boxes automatically produced by our scheme.

Our framework iteratively alternates between (A) re-training object detectors, (B)

re-localizing objects in the training images, and (C) querying annotators for verifica-

tion (Figure 4.1). Importantly, we use verification signals to help both re-training and
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re-localization.

More formally, let In be the set of images for which we do not have positively ver-

ified bounding-boxes at iteration n yet. Let Sn be the corresponding set of possible

object locations. Initially, I0 is the complete training set and S0 is a complete set of

object proposals [Alexe et al., 2010; Zitnick and Dollár, 2014; Uijlings et al., 2013]

extracted from these images (we use EdgeBoxes [Zitnick and Dollár, 2014]). To fa-

cilitate exposition, we describe our framework starting from the verification step (C,

Section 4.3.1). At iteration n we have a set of automatically detected bounding-boxes

Dn which are given to annotators to be verified. Detections which are judged to be

correct D+
n ✓ Dn are used for re-training the object detectors (A) in the next iteration

(Section 4.3.2). The verification signal is also used to reduce the search space Sn+1

for re-localization (B, Section. 4.3.3). We describe our main three steps below. We

defer to Section 4.4 a description of the object detection model we use, and of how to

automatically obtain initial detections D0 to start the process.

4.3.1 Verification by annotators

In this phase, we ask annotators to verify the automatically generated detections Dn at

iteration n. For this we explore two strategies (Figure 4.2): simple yes/no verification,

and more elaborate verification in which annotators are asked to categorize the type of

error.

Yes/No Verification. In this task the annotators are shown a detection ld and a class

label. They are instructed to respond Yes if the detection correctly localizes an object

of that class, and No otherwise. This splits the set of object detections Dn into D+
n

and D�
n . We define “correct localization” based on the standard PASCAL Intersection-

over-Union criterion [Everingham et al., 2010] (IoU). Let ld be the detected object

bounding-box and lgt be the actual object bounding-box (which is not given to the an-

notator). Let IoU(la, lb) = |la\ lb|/|la[ lb|, where | · | denotes area. If IoU(lgt , ld)� 0.5,

the detected bounding-box should be considered correct and the annotator should an-

swer Yes. Intuitively, this Yes/No verification is a relatively simple task which should

translate into fast annotation times.

Yes/Part/Container/Mixed/Missed Verification. In this task, we asked the annotators

to label an object detection ld as Yes (correct), Part, Container, Mixed, or Missed.

Yes is defined as above (IoU(lgt , ld) � 0.5). For incorrect detections the annotators
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Figure 4.2: Our two verification strategies for some images of the dog class. Yes/No verifi-

cation (left): verify a detection as either correct (Yes) or incorrect (No). YPCMM verification

(right): label a detection as Yes, Part, Container, Mixed or Missed.

are asked to diagnose the error as either Part if it contains part of the target object

and no background; Container if it contains the whole object and some background;

Mixed if it contains part of the object and some background; Missed if the object was

completely missed. This verification step splits Dn into D+
n and Dypcmm�

n . Intuitively,

determining the type of error is more difficult leading to longer annotation times, but

also brings more information that we can use in the next steps.

4.3.2 Re-training object detectors

In this step we re-train object detectors. After the verification step we know that D+
n

contains well localized object instances, while D�
n or Dypcmm�

n do not. Hence we train

using only bounding-boxes D+
1 [ · · ·[D+

n that have been positively verified in past

iterations. To obtain background training samples, we sample proposals which have

an IoU in range [0�0.5) with positively verified bounding boxes.

We should point out that this assumption for background samples has a risk of con-

sidering positive examples of other non-verified instances as background (false posi-

tives). We found experimentally that in PASCAL VOC and MS COCO, the number

of those false positives is negligible and in practice it does not affect the training. We

also considered sampling background training samples from proposals with an IoU in

range [0.1� 0.5) with positively verified bounding boxes. Theoretically, this further

reduces the risk for false positives because different instances are usually not highly

overlapped in the images. However, in practice this does not affect the training of the

detectors.
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Note how it is common in WSOL [Bilen et al., 2014, 2015; Cinbis et al., 2014;

Deselaers et al., 2010; Russakovsky et al., 2012; Siva and Xiang, 2011; Song et al.,

2014a,b; Wang et al., 2015] to also have a re-training step. However, they typically use

all detected bounding-boxes Dn. Since in WSOL generally less than half of them are

correct, this leads to rather weak detectors. In contrast, our verification step enables us

to train purely from correct bounding-boxes, resulting in stronger, more reliable object

detectors.

4.3.3 Re-localizing objects by search space reduction

In this step we re-localize objects in the training images. For each image, we apply the

current object detector to score the object proposals in it, and select the proposal with

the highest score as the new detection for that image. Importantly, we do not evaluate

all proposals S0, but instead use the verification signal to reduce the search space by

removing proposals.

Positively verified detections D+
n are correct by definition and therefore their im-

ages need not be considered in subsequent iterations, neither in the re-localization step

nor in the verification step. For negatively verified detections we reduce the search

space depending on the verification strategy, as described below.

Yes/No Verification. In the case where the annotator judges a detection as incorrect

(D�
n ), we can simply eliminate its proposal from the search space. This results in the

updated search space Sn+1, where one proposal has been removed from each image

with an incorrect detection.

However, we might make a better use of the negative verification signal. Since an

incorrect detection has an IoU < 0.5 with the true bounding-box, we can eliminate

all proposals with an IoU � 0.5 with it. This is a more aggressive reduction of the

search space. While it may remove some proposals which are correct according to the

IoU criterion, it will not remove the best possible proposal. Importantly, this strategy

eliminates those areas of the search space that matter: high scoring locations which

are unlikely to contain the object. In Section 4.6.2 we investigate which way of using

negatively verified detection performs better in practice.

Yes/Part/Container/Mixed/Missed Verification. In the case where annotators cat-

egorize incorrect detections as Part/Container/Mixed/Missed, we can use the type of

error to get an even greater reduction of the search space. Depending on the type of
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error we eliminate different proposals (Figure 4.3): Part: eliminate all proposals which

do not contain the detection; Container: eliminate all proposals which are not inside

the detection; Mixed: eliminate all proposals which are not inside the detection, or do

not contain it, or have zero IoU with it, or have IoU � 0.5 with it; Missed: eliminate

all proposals which have non-zero IoU with the detection.

To precisely determine what is “inside” and “contained”, we introduce the Intersection-

over-A measure: IoA(la, lb) = |la\ lb|/|la|. Note that IoA(lgt , ld) = 1 if the detection ld
contains the true object bounding-box lgt , whereas IoA(ld, lgt) = 1 if ld covers a part of

lgt . In practice, if ld is judged to be a Part by the annotator, we eliminate all proposals

ls with IoA(ld, ls)  0.9. Similarly, if ld is judged to be a Container, we eliminate all

proposals ls with IoA(ls, ld)  0.9. We keep the tolerance threshold 0.9 fixed in all

experiments.

Note how in WSOL there is also a re-localization step. However, because there is

no verification signal there is also no search space reduction: each iteration needs to

consider the complete set S0 of proposals. In contrast, in our work the search space

reduction greatly facilitates re-localization.

4.4 Implementation details

We summarize here two existing state-of-the-art components that we use in our frame-

work: the object detection model, and a WSOL algorithm which we use to obtain

initial object detections D0.

4.4.1 Object class detector

As object detector we use Fast R-CNN [Girshick, 2015], which combines object pro-

posals [Alexe et al., 2010; Zitnick and Dollár, 2014; Uijlings et al., 2013] with CNNs [He

et al., 2014; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015]. Instead of Se-

lective Search [Uijlings et al., 2013] we use EdgeBoxes [Zitnick and Dollár, 2014]

which gives us an “objectness” measure [Alexe et al., 2010] which we use in the ini-

tialization phase described below. For simplicity of implementation, for the re-training

step (Section 4.3.2) we omit bounding-box regression, so that the set of object pro-

posals stays fixed throughout all iterations. For evaluation on the test set, we then

train detectors with bounding-box regression. In most of our experiments, we use

AlexNet [Krizhevsky et al., 2012] as the underlying CNN architecture.
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Figure 4.3: Visualization of search space reduction induced by YPCMM verification on some

images of the cat class (part, container, mixed, and missed). In the last row, the search space

reduction steers the re-localization process towards the small cat on the right of the image and

away from the dog on the left.

4.4.2 Initialization by Multiple Instance Learning

We perform multiple instance learning (MIL) for weakly supervised object localiza-

tion [Bilen et al., 2014; Cinbis et al., 2014; Song et al., 2014a] to obtain the initial set

of detections D0. We start with the training images I0 and the set of object proposals S0

extracted using EdgeBoxes [Zitnick and Dollár, 2014]. Following [Bilen et al., 2014;

Girshick et al., 2014; Song et al., 2014a,b; Wang et al., 2015] we extract CNN features

on top of which we train an SVM. We iterate between (A) re-training object detectors

and (B) re-localizing objects in the training images. We stop when two subsequent

re-localization steps yield the same detections, which typically happens within 10 iter-

ations. These detections become D0. In the very first iteration, we train the classifier

using complete images as positive training examples [Cinbis et al., 2014; Russakovsky
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Figure 4.4: Comparing the search process of Yes/No verification with

Yes/Part/Container/Mixed/Missed on an image of the bird class. The extra signal for

YPCMM allows for a more targeted search, resulting in fewer verification steps to find the

object.

et al., 2012]. More details about this standard MIL framework can be found in Sec-

tion 2.2.

We apply two improvements to the standard MIL framework. First, in high dimen-

sional feature space the discriminative SVM classifier can relatively easily separate

any positive examples from negative examples, which means that most positive exam-

ples are far from the decision hyper-plane. Hence the same positive training examples

used for re-training (A) are often re-localized in (B), leading to premature locked-in

behavior. To prevent this, Cinbis et al. [2016] introduced multi-fold MIL: similar to

cross-validation, the dataset is split into 10 subsets, where the re-localization on each

subset is done using detectors trained on the union of all other subsets. Second, like

in Cinbis et al. [2016]; Deselaers et al. [2010]; Guillaumin and Ferrari [2012]; Prest

et al. [2012]; Shapovalova et al. [2012]; Siva and Xiang [2011]; Shi et al. [2012]; Tang

et al. [2014]; Wang et al. [2014a], we combine the object detector score with a gen-

eral measure of “objectness” [Alexe et al., 2010], which measures how likely it is that

a proposal tightly encloses an object of any class (e.g. bird, car, sheep), as opposed

to background (e.g. sky, water, grass). More particularly, we linearly combine these

two scores under the assumption of equal weights. In this paper we use the recent

objectness measure of Zitnick and Dollár [2014].

4.5 Collecting human verifications

We now describe how we collect human verifications using expert annotators in an

in-house experiment (Section 4.5.1) and how we crowd-source them using naive anno-

tators on Amazon Mechanical Turk (AMT) (Section 4.5.2).
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Figure 4.5: The workflow of our crowd-sourcing protocol for collecting Yes/No verification.

The annotators read a set of instructions and then go through an interactive training stage that

consists of a qualification test at the end of which they receive a detailed feedback on how well

they performed. Annotators who successfully pass the test can proceed to the annotation stage.

In case of failure, they are allowed to repeat the test as many times as they want until they

succeed.

4.5.1 Expert human verification

For the Yes/No and YPCMM verification tasks, we used five annotators from the Uni-

versity of Edinburgh who were given examples to learn about the IoU criterion [Ev-

eringham et al., 2010]. For both tasks we created a full-screen interface. All images

of a target class were shown in sequence, with the current detection superimposed.

For Yes/No verification, annotators were asked to press “1” for Yes and “0” for No.

For YPCMM verification, the annotators were asked to click on one of five on-screen

buttons corresponding to Yes, Part, Container, Mixed and Missed.

4.5.2 Crowd-sourced human verifications

We now describe our crowd-sourcing framework for the Yes/No verification task (Fig-

ure 4.5). Annotators read a simple set of instructions and then go through an interactive

training stage. Those who successfully pass the training stage can proceed to the main

stage.

Instructions. The annotators are given an image with a displayed bounding box and

the name of a target object class. They are instructed to press “1” (pick Yes) if the

displayed box correctly localizes any object of the given class or press “0” (pick No)

otherwise.

The definition of a correct bounding box is crucial. We carefully phrase our instruc-
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Figure 4.6: The definition of a correct box according to the IoU criterion [Everingham et al.,

2010] as we explain it to the annotators during the instructions of the task.

tions as: “Imagine a perfectly tight box around the object. The displayed box should be

considered as correct if its overlap with the imaginary perfect box is greater than 0.5”

(Figure 4.6). We also include examples of perfect (IoU = 1), clearly wrong (IoU < 0.4)

and clearly correct (IoU > 0.6) boxes on four different images (Figure 4.7).

In order to let annotators know approximately how long the task will take, we

suggest a time of 2s per verification. This is an indicative annotation time that we

estimated from a small pilot study.

Qualification test. After reading the instructions, the annotators need to pass a qual-

ification test. A qualification test is a good mechanism for enhancing the quality of

crowd-sourcing data and for filtering out bad annotators and spammers [Andriluka

et al., 2014; Endres et al., 2010; Johnson and Everingham, 2011; Krause et al., 2013;

Russakovsky et al., 2015a; Su et al., 2012]. Some annotators do not pay attention to

the instructions or do not even read them. Qualification tests have been successfully

used to collect image labels, object bounding boxes, and segmentations for some of

the most popular datasets (e.g., COCO [Lin et al., 2014] and Imagenet [Russakovsky

et al., 2015a; Su et al., 2012]).

The qualification test is designed to mimic our main task of Yes/No verification. We

show the annotator a sequence of 10 different images (of the same class) accompanied

with a bounding box and ask them to carry out the Yes/No verification task.

As our qualification examples, we use a small set of images with ground-truth

bounding boxes. For image, we first generate a very large number of random windows,

and then we sample some of them carefully (around 20) so that their overlap follows

a uniform distribution from 0 to 1. This selection is important because we want to
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Figure 4.7: Instruction examples of perfect (IoU = 1), clearly wrong (IoU < 0.4) and clearly

correct (IoU > 0.6) boxes on four images.

teach the annotators how they should judge boxes from the whole spectrum of overlap

values.

Feedback. After the annotators finish the qualification test, they receive a detailed

feedback page with all bounding boxes they annotated (Figure 4.8). For each image,

we display the bounding box that they annotated, their decision (Yes/No), the real

overlap of the box and a simple message about the correctness of their decision.

Success or failure. The annotators pass the qualification test if all their response on

examples with IoU < 0.4 or IoU > 0.6 are correct. We do not penalize annotators if

they respond incorrectly on any boundary cases (IoU ⇡ 0.5, practically we use 0.4 <

IoU < 0.6). Those that pass the test are recorded as qualified annotators and can
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Figure 4.8: Examples of annotator feedback. For each example, we provide the bounding box

they verified, their decision (Yes/No), the real overlap of the box and a simple message about

the correctness of their decision. We provide here examples of all possible cases of different

annotators decisions and different box overlaps.

proceed to the main annotation stage. A qualified annotator never has to retake the

qualification test. In case of failure, annotators are allowed to repeat the test as many

times as they want. The combination of automatically providing rich feedback and

allowing annotators to repeat the test makes the training stage interactive and highly

effective. Annotators that have reached the desired level of quality can be expected to

keep it throughout the annotation [Hata et al., 2017].

Verifying boxes. In the main verification stage, annotators are presented small batches

of 20 consecutive images with displayed boxes to verify. For increased efficiency, our

batches consist of a single object class. Thanks to this, annotators do not have to re-

read the class name for every image, and can keep their mind focused on their prior

knowledge about the class to find it rapidly in the image [Torralba et al., 2006]. More

generally, it avoids task-switching which is well-known to increase response time and

decrease accuracy [Rubinstein et al., 2001; Monsell, 2003].

Quality control. Quality control is a common process when crowd-sourcing image

annotations [Bearman et al., 2016; Kovashka and Grauman, 2015; Lin et al., 2014;

Russakovsky et al., 2015a; Russell et al., 2008; Sorokin and Forsyth, 2008; Su et al.,

2012; Vondrick et al., 2013; Welinder et al., 2010]. We control the quality of the anno-

tation by hiding two evaluation images inside a 20-image batch, and monitor the anno-
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tator’s accuracy on them. For each evaluation image, we have ground-truth bounding

boxes and we generate a large set of random windows similarly to the qualification

test. This leads to a large set of golden questions with different boxes at various over-

lap values for the same evaluation image. We point out that we use extremely few

evaluation images. On PASCAL VOC 2007, we used only 40, which amounts to 0.5%

of the dataset. This is a negligible overhead. Annotators that fail to respond correctly

on these evaluation images are not able to submit the task. Note that we do not use as

golden questions any boundary verification cases (0.4 < IoU < 0.6). We do not do any

post-processing rejection of the submitted data.

4.6 Experimental Results

4.6.1 Dataset and evaluation protocol

PASCAL VOC 2007. We perform experiments on PASCAL VOC 2007 [Everingham

et al., 2010], which consists of 20 classes. The trainval set contains 5011 images, while

the test set contains 4952 images. We use the trainval set with accompanying image-

level labels to train object detectors, and measure their performance on the test set.

Following the common protocol for WSOL experiments [Cinbis et al., 2014, 2016;

Deselaers et al., 2010; Russakovsky et al., 2012; Wang et al., 2015], we exclude train-

val images that contain only difficult and truncated instances, ending up with 3550

images. In Sections 4.6.2, 4.6.3 we carry out a detailed analysis of our system in these

settings, using AlexNet as CNN architecture [Krizhevsky et al., 2012] and using expert

annotators. In Section 4.6.4 we also present results when using the complete trainval

set, both expert and naive human verification crowd-sourced on Amazon Mechanical

Turk (AMT), and the deeper VGG16 as CNN architecture [Simonyan and Zisserman,

2015].

Evaluation. Given a training set with image-level labels, our goal is to localize the

object instances in this set and to train good object detectors, while minimizing hu-

man annotation effort. We evaluate this by exploring the trade-off between localiza-

tion performance and quality of the object detectors versus required annotation effort.

We quantify localization performance in the training set with the Correct Localiza-

tion (CorLoc) measure [Bilen et al., 2014, 2015; Cinbis et al., 2014, 2016; Deselaers

et al., 2010; Russakovsky et al., 2012; Siva and Xiang, 2011; Wang et al., 2015; Bilen
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Figure 4.9: Trade-off between the number of verifications and CorLoc for the simulated veri-

fication case on PASCAL VOC 2007.

and Vedaldi, 2016]. CorLoc is the percentage of images in which the bounding-box

returned by the algorithm correctly localizes an object of the target class (i.e., IoU

� 0.5).

We quantify object detection performance on the test set using mean average preci-

sion (mAP), as standard in PASCAL VOC 2007. We quantify annotation effort both in

terms of the number of verifications and in terms of actual human time measurements.

As most previous WSOL methods [Bilen et al., 2014, 2015; Cinbis et al., 2014,

2016; Deselaers et al., 2010; Russakovsky et al., 2012; Siva and Xiang, 2011; Song

et al., 2014a,b; Wang et al., 2015], our scheme returns exactly one bounding-box per

class per training image. This enables clean comparisons to previous work in terms of

CorLoc on the training set, and keeps the human verification tasks simple (as we do

not need to ask the annotators whether they see additional instances in an image). Note

how at test time the detector is capable of localizing multiple objects of the same class

in the same image (and this is captured in the mAP measure).

Compared methods. We compare our approach to the fully supervised alternative by

training the same object detector (Section 4.4.1) on the same training images, but with

manual bounding-boxes (again, one bounding-box per class per image). On the other

end of the supervision spectrum, we also compare to a modern MIL-based WSOL tech-

nique run on the same training images, but without human verification (Section 4.4.2).

Since that technique also forms the initialization step of our method, this comparison
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reveals how much farther we can go with human verification.

For MIL WSOL, the effort to draw bounding-boxes is zero. For fully super-

vised learning we take the actual annotation times for ILSVRC [Russakovsky et al.,

2015a] from Su et al. [2012]: they report 35 seconds for drawing and verifying one

high-quality bounding-box. These timings are also representative for PASCAL VOC,

since it is of comparable difficulty and its annotations are of comparable quality. The

bounding-boxes in both datasets are of high quality and precisely match the object

extent.

4.6.2 Simulated verification

We first use simulated verification to determine how best to use the verification signal.

We simulate human verification by using the available ground-truth bounding boxes.

Note how these are not given to the learning algorithm, they are only used to derive the

verification signals of Section 4.3.1. Figure 4.9 compares four ways to use the verifi-

cation signal in terms of the trade-off between the number of verifications and CorLoc

(Section 4.3.3): (I) only retrain the object detector (using positively verified detec-

tions D+
n ); (II) retrain + remove Neg: for Yes/No verification, retrain and reduce the

search space by eliminating one proposal for each negatively verified detection; (III)
retrain + remove ExtNeg: for Yes/No verification, retrain and eliminate all proposals

overlapping with a negatively verified detection; (IV) retrain + remove PCMM: for

YPCMM verification, retrain and eliminate proposals according to the type of error.

As Figure 4.9 shows, even using verification just to re-train the object detector

(I) drastically boosts CorLoc from the initial 43% (achieved by MIL WSOL) up to

82%. This requires checking each training image on average 4 times. Using the ver-

ification signal in the re-localization step by reducing the search space (II–IV) helps

to reach this CorLoc substantially faster (1.6–2 checks per image). Moreover, the fi-

nal CorLoc is much higher when we reduce the search space. Removing negatively

verified detections brings a considerable jump to 92% CorLoc (II); removing all pro-

posals around negatively verified detections further increases CorLoc to 95% (III); the

Yes/Part/Container/Mixed/Missed strategy appears to be the most promising, achiev-

ing a near-perfect 96% CorLoc after checking each image only 2.5 times on average.

These results show that feeding the verification signal into both the re-training and

re-localization steps quickly results in a large number of correctly located object in-

stances.
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Figure 4.10: Analysis of expert verification. (a) Percentage of positively verified detections

as a function of ground-truth IoU, for each annotator. (b) Average human response time as a

function of ground-truth IoU. (c) Percentage of incorrectly verified detections as a function of

object area (relative to image area).

Figure 4.4 compares the search process of Yes/No and YPCMM verification strate-

gies on a bird example. The second detection is diagnosed in YPCMM as a container.

This focuses the search to that particular part of the image. In contrast, detections of

the Yes/No case jump around before finding the detection. This shows that the search

process of YPCMM is more targeted. However, in both cases the target object location

is found rather quickly.

In conclusion, YPCMM is the most promising verification strategy, followed by

Yes/No with removing all proposals overlapping with a negatively verified detection

(III). Since Yes/No verification is intuitively easier and faster, we try both strategies in

experiments with expert human annotators.

4.6.3 Expert human verification

In this section, we use human verification from our expert annotators (Section 4.5.1).
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Figure 4.11: Examples of objects localized by using our proposed Yes/No expert verification

scheme on the trainval set of PASCAL VOC 2007 (Section 4.6.3). For each example, we com-

pare the final output of our scheme (green box) to the output of the reference multiple instance

learning (MIL) weakly-supervised object localization approach (red box) (Section 4.4.2).

Annotation time. The mean response time of the Yes/No verification task was 1.6

seconds per verification. The more elaborate task of YPCMM verification took on

average 2.4 seconds per verification.

Analysis of expert verification. We evaluate here the performance of expert annota-

tors to the Yes/No verification task. Figure 4.10(a) reports the percentage of positively

verified detections as a function of their IoU with the ground-truth bounding-box. We

observe that experts behave quite closely to the desired PASCAL criterion (i.e. IoU

> 0.5) which we use in our simulations. All expert annotators behave identically on

easy cases (IoU < 0.25, IoU > 0.75). On boundary cases (IoU ⇡ 0.5) we observe some

annotator bias. For example, anno2 tends to judge boundary cases as wrong detections,

whereas anno3 and anno4 judge them more frequently as correct. Overall the percent-

age of incorrect Yes and No judgments are 14.8% and 8.5%, respectively. Therefore

there is a slight bias towards Yes, i.e. humans tend to be slightly more lenient than the

IoU> 0.5 criterion.

While the average human response time is 1.6 s for the Yes/No verification, the

response time for verifying difficult detections (IoU ⇡ 0.5) is significantly higher (2.2

s, Figure 4.10(b)). This shows how the difficulty of the verification task is directly

linked to the IoU of the detection, and is reflected in the time measurements. We

also found that expert verification errors strongly correlate with the area of objects:

48% of all errors are made when objects occupy less than 10% of the image area

(Figure 4.10c).
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Figure 4.12: Evaluation on PASCAL VOC 2007: CorLoc and mAP against human annotation

time in hours (log-scale). All orange and red curves are variations of our proposed scheme,

with simulated (‘sim’) and expert real (‘real’) annotators. ‘Draw’ indicates learning from

manual bounding-boxes (full supervision). ‘MIL’ indicates learning under weak supervision

only, without human verification (sec. 4.4.2). The fully supervised approach needs 8⇥ extra

annotation time to obtain similar performance to our framework.

Simulated vs. expert annotators. We first compare simulated and expert human an-

notators by plotting CorLoc and mAP against actual annotation time (rather than as

number of verifications as in Section 4.6.2). For simulated verification, we use av-

erage expert annotation time as reported above. Figure 4.12 shows the results on a

log-scale. While expert annotators are somewhat worse than simulations in terms of

CorLoc on the training set, the mAP of the resulting object detectors on the test set

are comparable. The diverging results for CorLoc and mAP is because expert human

judgment errors are generally made on boundary cases with bounding-boxes that only

approximately cover an object (Figure 4.10(a)). Using these cases either as positive or
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negative training examples, the object detector remains equally strong. To conclude, in

terms of training high quality object detectors, actual expert annotators reliably deliver

similar results as simulated annotators.

In Section 4.6.2 we observed that YPCMM needs fewer verifications than Yes/No.

However, in terms of total annotation time, the Yes/No task has the more favorable

trade-off: Yes/No achieves 83% CorLoc and 45% mAP by taking 5.8 hours of anno-

tation time, while YPCMM achieves 81% CorLoc and 45% mAP by taking 7.7 hours

(Figure 4.12). Hence we conclude that the Yes/No task is preferable for human anno-

tation, as it is easier and faster.

Weak supervision vs. expert verification. We now compare the reference MIL WSOL

approach that we use to initialize our process (Section 4.4.2 and magenta diamond in

Figure 4.12) to the final output of our Yes/No expert human verification scheme (solid

orange line, Figure 4.12). While MIL WSOL achieves 43% CorLoc and 27% mAP, us-

ing expert verification bring a massive jump in performance to 83% CorLoc and 45%

mAP. Hence at a modest cost of 5.8 hours of annotation time we achieve substantial

performance gains. Examples in Figure 4.11 show that our approach localizes objects

more accurately and succeeds in more challenging conditions, e.g. when the object is

very small and appears in a cluttered scene.

Full supervision vs. expert verification. We now compare our Yes/No expert veri-

fication scheme (solid orange line, Figure 4.12) to standard fully supervised learning

with manual bounding-boxes (solid green lines). The object detectors learned by our

scheme achieve 45% mAP, almost as good as the fully supervised ones (51% mAP).

Importantly, fully supervised training needs 44 hours of annotation time, when assum-

ing an optimistic 35 s per box). Our method instead requires only 5.8 hours, a reduction

in human effort of 8⇥.

From a different perspective, when given the same annotation time as our approach

(5.8 hours), the fully supervised detector only achieves 32% mAP.

We conclude that by the use of just an inexpensive verification component, we can

train strong object detectors at little cost. This is significant since it enables the cheap

creation of high quality object detectors for a large variety of classes, reducing the need

for massive annotation efforts such as ImageNet [Russakovsky et al., 2015a].
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4.6.4 Complete training set, AMT human verification and deeper

network

In the previous section, we showed that in terms of training high quality object detec-

tors, expert annotators reliably deliver similar results as simulated annotators. In this

section, we perform experiments with both expert and AMT annotators and we discuss

the differences in their performance on our verification task

Dataset. In this section, we perform here experiments using the complete trainval set

of PASCAL VOC 2007 (i.e. 5011 images). We test the detectors again on the test set

and we follow the exact evaluation settings explained in the Section 4.6.1.

Annotation time of AMT annotators. The mean response time of AMT annotators

was 1.8 seconds per verification. Interestingly, this time is only slightly above the

annotation time of expert annotators (1.6 s per verification).

Analysis of AMT annotators. We perform here an analysis of the Yes/No human

verification results which we collected using our crowd-sourced framework of Sec-

tion 4.5.2. In Figure 4.13, we report the percentage of positively verified detections as

a function of their IoU with the ground-truth bounding-box (blue line). As expected,

the behavior of AMT annotators is slightly worse that the expert behavior. The AMT

annotators perform quite well and on par with experts on the extreme cases IoU > 0.6

and IoU < 0.2. However, we observe a tendency on judging boundary and slightly bad

(0.3 < IoU < 0.5) boxes as correct.

Cost. We paid annotators $0.08 to annotate a batch of 20 images. Based on their mean

response time this results in a wage of about $8 per hour. The total cost for annotating

the whole trainval set of PASCAL VOC 2007 was $83.8.

Expert vs. AMT verification. We first compare expert and AMT human annotators

by plotting CorLoc and mAP against annotation time. Note that here we re-did our

experiment using the complete training set. Results are shown in Figure 4.14. Our

expert verification scheme yields 81% CorLoc and 50% mAP using 9.2 hours of anno-

tation. Note that the mAP of expert verification is 5% better than the one reported in

the previous section as here we train from the complete trainval set. Our verification

scheme using AMT annotators perform slightly worse: 76% CorLoc and 47% mAP.

Even though ATM annotators are a bit slower than experts, the total human annota-
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Figure 4.13: Comparison between expert and AMT annotators. Percentage of positively

verified detections as a function of ground-truth IoU, for AMT annotators (blue line) and expert

annotators (red line).

tion cost using either experts or AMT annotators is about the same. This is because

AMT annotators judge more frequently slightly bad boxes as correct (see Figure 4.13)

leading to fewer verifications in total that expert verification. Everything below in this

section lists CorLoc and mAP for both AMT and expert verification.

Weak supervision vs. AMT verification. MIL WSOL achieves 43% CorLoc and

30% mAP. Note that this mAP result is slightly better than the mAP reported in the

previous section as we now train from the complete trainval set. Using human verifi-

cation bring a massive jump in performance to 76%-81% CorLoc and 47%-50% mAP.

Hence at a modest annotation cost we achieve substantial performance gains.

The state-of-the-art WSOL approaches perform as follows when using AlexNet:

Cinbis et al. [2016] achieve 52.0% CorLoc and 30.2% mAP, Bilen et al. [2015] achieve

43.7% CorLoc and 27.7% mAP, Wang et al. [2015] achieve 48.5% CorLoc and 31.6%

mAP, Bilen and Vedaldi [2016] achieve 54.2% CorLoc and 34.5% mAP.

Our method using human verification substantially outperforms all of them, reach-

ing 76%-81% CorLoc and 47%-50% mAP. Hence at a modest extra annotation cost,

we obtain many more correct object locations and train better detectors.

Full supervision vs. AMT human verification. Under full supervision, Girshick

[2015] reports 57% mAP based on AlexNet. Training Fast R-CNN from one bounding

box per class per image, results in 55% mAP. Our Yes/No human verification scheme
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Figure 4.14: Evaluation on PASCAL VOC 2007 using the complete trainval set: CorLoc and

mAP against human annotation time in hours (log-scale).

gets to 47%-50% mAP.

Deeper CNN Additionally, we experiment with VGG16 instead of AlexNet, with the

same settings. Training with full supervision leads to 66% mAP, while our verification

scheme delivers 54% mAP with AMT annotators and 58% mAP with experts. Our

reference MIL WSOL yields 32% mAP.

Hence, on both CNN architectures our verification-based training scheme using

either expert or AMT annotators produces high quality detectors, achieving 80-90% of

the mAP of their fully supervised counterparts.

Influence of qualification test and quality control. The above findings indicate that

using our designed crowd-sourcing framework we can train naive annotators and make

them behave reasonably well on our Yes/No verification task. To better understand the

influence of our qualification test and the quality control mechanism, we conducted



4.7. Conclusions 77

reduced training set complete training set

Yes/No Full Weak Yes/No Yes/No Full

(expert) supervision supervision (expert) (AMT) Supervision

AlexNet 45% 51% 30% 50% 47% 55%

VGG16 55% 61% 32% 58% 54% 66%

Table 4.1: Comparison of mAP results between our Yes/No (expert or AMT) human verification

scheme, weak supervision and full supervision using different training sets and different net-

work architectures. ‘reduced training set’: excluding trainval images containing only difficult

and truncated instances (3550 images); ‘complete training set’: all trainval images (5011).

a series of small-scale crowd-sourcing experiments on 400 images of PASCAL VOC

2007 trainval set. In Figure 4.15, we report once more the percentage of positively

verified detections as a function of their IoU with the ground-truth bounding box for

all these small-scale experiments. Using a qualification test vastly improves the quality

of verifications. We observe that without a qualification test and a quality control

mechanism, we obtain quite poor verifications. AMT annotators judge quite frequently

clearly wrong boxes (IoU < 0.3) as correct and vice versa. Using a qualification test

significantly improves the accuracy of the verifications. The quality control also brings

a further improvement. Using our full crowd-sourced protocol, we observe that AMT

annotators perform quite well and on par with experts on the extreme cases IoU ¿ 0.6

and IoU ¡ 0.2.

4.7 Conclusions

We proposed a scheme for training object class detectors which introduces a human

verification step to improve the re-training and re-localization steps common to most

weakly supervised approaches. Experiments on PASCAL VOC 2007 with both expert

and crowd-sourced annotators show that our scheme produces detectors performing

almost as good as those trained in a fully supervised setting, without ever drawing

any bounding-box. As the verification task is very quick, our scheme reduces the total

human annotation time by 8⇥.

One important aspect of our scheme is that one can control the quality of the gen-

erated bounding boxes in the training set. Our scheme results in a training set with

generated bounding boxes above a desired IoU threshold. In this Chapter, we only

considered 0.5 IoU. However, one can simply use stricter threshold values (e.g., 0.7
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Figure 4.15: Influence of the qualification test and quality control on the accuracy of AMT

verifications (on 400 images from PASCAL VOC 2007).

IoU) aiming at more accurate bounding boxes that can potentially be used to train

higher quality object detectors at a cost of extra human verifications per image.

One limitation of our scheme is that the verifications need to be acquired itera-

tively during detector training. If the initialization of our scheme (Section 4.4.2) or

the underlying object detector (Section 4.4.1) change, we should re-collect all human

verifications.
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Figure 5.1: The workflow of our crowd-sourcing framework for collecting click annotations.

The annotators read a set of instructions and then go through an interactive training stage that

consists of a simple qualification test based on synthetic polygons. After completing it, they

receive a detailed feedback on how well they performed. Annotators who successfully pass the

qualification test can proceed to the annotation stage. In case of failure, they can repeat the

test as many times as they want.

5.6.2 Incorporating center-fixations into WSOL . . . . . . . . . . 96

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Introduction

In the previous chapter we proposed a scheme for training object detectors using only

human verification. In this chapter, we propose another efficient annotation scheme to

train object detectors. Once more, we aim to minimize human annotation effort while

producing high-quality detectors. To this end we propose annotating objects by asking

the annotators to simply click on the object center. Unlike human verifications, clicks

can be acquired separately, independently of the detector training framework used. In

Section 5.5, we compare this center-clicking scheme with the one presented in the

previous chapter.

Clicking on an object can be seen as the human-computer-interaction equivalent

of pointing to an object. Pointing is a natural way for humans to communicate that

emerges early during cognitive development [Tomasello et al., 2007]. Human pointing

behavior is well-understood in human-computer interaction, and can be modeled math-

ematically [Soukoreff and MacKenzie, 2004]. For the purpose of image annotation,

clicking on an object is therefore a natural choice. Clicking offers several advantages
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over other ways to annotate bounding boxes: (1) is substantially faster than drawing

bounding boxes [Su et al., 2012], (2) requires little instructions or annotator training

compared to drawing [Su et al., 2012] or verifying bounding boxes [Papadopoulos

et al., 2016; Russakovsky et al., 2015b; Su et al., 2012], because it is a task that comes

natural to humans, (3) can be performed using a simple annotation interface (unlike

bounding box drawing [Su et al., 2012]), and requires no specialized hardware (unlike

eye-tracking data as in our scheme presented in Chapter 3). Note that the scheme we

propose does not require a human-in-the-loop setup [Deng et al., 2013; Papadopoulos

et al., 2016; Parkash and Parikh, 2012; Vijayanarasimhan and Grauman, 2014; Jain

and Grauman, 2016b]: clicks can be acquired separately, independently of the detector

training framework used.

Given an image known to contain a certain object class, we ask annotators to click

on the center of an imaginary bounding box enclosing the object (center-click annota-

tions). These clicks provide reliable anchor points for the full bounding box, as they

provide an estimate of its center. Moreover, we can also ask two different annota-

tors to provide center-clicks on the same object. As their errors are independent, we

can obtain a more accurate estimate of the object center by averaging their click posi-

tions. Interestingly, given the two clicks, we can even estimate the size of the object,

by exploiting a correlation between the object size and the distance of the click to the

true center (error). As the errors are independent, the distance between the two clicks

increases with object size enabling to estimate the size of the object based on this dis-

tance. As a novel component of our crowd-sourcing protocol, we introduce a stage to

train the annotators based on synthetic polygons. This enables generating an arbitrar-

ily large set of training questions without using any manually drawn bounding box.

Moreover, we derive models of the annotator error directly from this polygon stage,

and use them later to estimate object size in real images.

We incorporate these clicks into a reference Multiple Instance Learning (MIL)

framework which was originally designed for weakly supervised object detection (Sec-

tion 4.4.2). It jointly localizes object bounding boxes over all training images of an

object class. It iteratively alternates between re-training the detector and re-localizing

objects. We use the center-clicks in the re-localization phase, to promote selecting

bounding boxes compatible with the object center and size estimated based on the

clicks.

Based on extensive experiments with crowd-sourced center-clicks on Amazon Me-

chanical Turk for PASCAL VOC 2007 and simulations on MS COCO, we demon-
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strate that: (1) our scheme incorporating center-click into MIL delivers better bound-

ing boxes on the training set. In turn, this leads to high-quality detectors, performing

substantially better than those produced by weakly supervised techniques, with a mod-

est extra annotation effort (less than 4h on the entire PASCAL VOC 2007 trainval); (2)

these detectors in fact perform in a range close to those trained from manually drawn

bounding boxes; (3) as the center-click task is very fast, our scheme reduces total anno-

tation time by 9⇥ (two clicks) to 18⇥ (one click); (4) given the same human annotation

budget, our scheme outperforms our human verification scheme [Papadopoulos et al.,

2016] presented in Chapter 4, which was already very efficient.

5.2 Related work

The work of this Chapter is related to work reducing annotation time for training object

detectors. More details about WSOL or other ways to reduce annotation effort for

training object class detectors can be found in Sections 2.2, 2.3. We focus here on

click supervision approaches that were not covered in Chapter 2.

5.2.1 Click supervision

Click annotation schemes have been used in part-based detection to annotate part lo-

cations of an object [Branson et al., 2011; Wah et al., 2011], and in human pose esti-

mation to annotate key-points of human body parts [Johnson and Everingham, 2010;

Ramanan, 2006; Sapp and Taskar, 2013].

Click supervision has also been used to reduce the annotation time for semantic

segmentation [Bearman et al., 2016; Jain and Grauman, 2016a; Bell et al., 2015; Wang

et al., 2014b]. Recently, Bearman et al. [2016] collected clicks by asking the annotators

to click anywhere on a target object. In Section 5.5.1, we show that our center-click

annotations outperforms these click-anywhere annotations for object class detection.

Finally, Mettes et al. [2016] proposed to annotate actions in videos with click annota-

tions.

Our work also offers other new elements over the above approaches, e.g. estimating

object area from two clicks and training annotators with synthetic polygons.
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aeroplane bicycle bus

(a) (b) (c)

Figure 5.2: Instruction Examples: (a) the desired box center may not be on the object, (b)

if the object instance is truncated, click on the center of the visible part and (c) if multiple

instances are present, click on the center of any one of them.

5.3 Crowd-sourcing clicks

We now describe the main components of our crowd-sourcing workflow, which is il-

lustrated in Fig. 5.1.

5.3.1 Instructions

Our annotators are given an image and the name of the target class. Unlike Bear-

man et al. [2016] where annotators are asked to click anywhere on a target object,

we want them to click on the center of an imaginary bounding box around the object

(Figure 5.2). This definition of center is crucial, as it provides a strong anchor point

for the actual bounding box location. However, humans have a tendency to click on

the center of mass of the object, which gives a less precise anchor point for the box

location. We therefore carefully phrase our instructions as: “imagine a perfectly tight

rectangular box around the object and then click as close as possible to the center of

this imaginary box”. For concave objects, the box center might even lie outside the

object (Figure 5.2(a)).

We also include explanations for special cases: If an object is truncated (i.e. only

part of it is visible), the annotator should click on the center of the visible part (Fig-

ure 5.2(b)). If there are multiple instances of the target class, one should click on the

center of only one of them (Figure 5.2(c)).

In order to let annotators know approximately how long the task will take, we

suggest a time of 3s per click. This is an upper bound on the expected annotation time

that we estimated from a small pilot study.
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Figure 5.3: Examples that the annotators receive as feedback. For each example, we provide

the real center of the polygon (yellow dot), their click (green or red dot) and the Euclidean

distance between the two.

5.3.2 Annotator training

After reading the instructions, the annotators go through the training stage. They com-

plete a simple qualification test, at the end of which we provide detailed feedback on

how well they performed. Annotators who successfully pass this test can proceed to the

annotation stage. In case of failure, annotators can repeat the test until they succeed.

Qualification test. Qualification tests have been successfully used for enhancing the

quality of the crowd-sourced data and filtering out bad annotators and spammers [An-

driluka et al., 2014; Endres et al., 2010; Johnson and Everingham, 2011; Krause et al.,

2013; Russakovsky et al., 2015a; Su et al., 2012]. This is necessary because some

annotators pay little to no attention to the task instructions.

During a qualification test, the annotator is asked to respond on some questions for

which the answers are known. This typically requires experts to annotate a batch of

examples (in our case draw object bounding boxes). Instead, we use an annotation-free

qualification test in which the annotators need to click on the center of 20 synthetically

generated polygons, like the ones in Figure 5.1. Using synthetic polygons allows us to

generate an arbitrarily large set of qualification questions with zero human annotation

cost. Additionally, annotators cannot overfit to qualification questions or cheat by

sharing answers, which is possible when the number of qualification questions is small.

Why polygons? We use polygons instead of axis-aligned rectangles in order to train

the annotators on the difference between the center of mass of an object and the center

of the imaginary box enclosing the object. Moreover, polygons provide a more real-
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Figure 5.4: The error distance of the annotators as a function of the square root of the object

area.

istic level of difficulty for the qualification test. Finding the center of an axis-aligned

rectangle is trivial, whereas finding the center of a polygon is analogous to finding the

center of a real object. And yet, polygons are abstractions of real objects, thus reduc-

ing the cognitive load on the annotators, potentially making the training stage more

efficient.

Feedback. After the annotators finish the qualification test, they receive a feedback

page with all polygon examples they annotated (Fig. 5.3). For each polygon, we dis-

play (a) the position of the real center, (b) the position of the annotator’s click, and (c)

the Euclidean distance in pixels between the two (error distance).

Success or failure. The annotator needs to click close to the real centers of the poly-

gons in order to pass the test. The exact criterion to pass the test is to have an error

distance below 20 pixels, on average over all polygons in the test.

The annotators that pass the qualification test are flagged as qualified annotators

and can proceed to the main annotation task where they work on real images. A qual-

ified annotator never has to retake the qualification test. In case of failure, annotators

are allowed to repeat the test as many times as they want until they pass it successfully.

The combination of providing rich feedback and allowing annotators to repeat the

test results in an interactive and highly effective training stage.

5.3.3 Annotating images

In the annotation stage, annotators are presented small batches of 20 consecutive im-

ages to annotate. For increased efficiency, our batches consist of a single object
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Qualification test Quality control Error distance

No No 43.8

images No 29.4

polygons No 29.3

polygons Yes 21.2

Table 5.1: The influence of the two main elements of our crowd-sourcing protocol on click

accuracy.

class(for more details see Section 4.5.2-Verifying boxes).

Quality control. Quality control is a common process when crowd-sourcing image

annotations [Bearman et al., 2016; Kovashka and Grauman, 2015; Lin et al., 2014;

Russakovsky et al., 2015a; Russell et al., 2008; Sorokin and Forsyth, 2008; Su et al.,

2012; Vondrick et al., 2013; Welinder et al., 2010]. We control the quality of click

annotation by hiding two evaluation images for which we have ground-truth bounding

boxes inside a 20-image batch, and monitor the annotator’s accuracy on them (golden

questions). Annotators that fail to achieve an accuracy above the threshold set in the

qualification test are not able to submit the task. We do not do any post-processing of

the submitted data.

We point out that we use extremely few golden questions, and add them repeatedly

to many batches. On PASCAL VOC 2007, we used only 40, which amounts to 0.5%

of the dataset. This is a negligible overhead.

5.3.4 Data collection

We implemented our annotation scheme on Amazon Mechanical Turk (AMT) and we

collected click annotations for all 20 classes of the whole trainval set of PASCAL

VOC 2007 [Everingham et al., 2010]. Each image was annotated with a click by two

different annotators for each class present in the image. This results in 14,612 clicks

in total for the 5,011 trainval images.

Annotation time. During the annotation stage we measure the annotator’s response

time from the moment the image appears until they click. The mean response time

was 1.87s. This indicates that the task can be performed very efficiently by annotators.

Note that we are able to annotate the whole PASCAL VOC 2007 trainval set with one

click per object class per image in only 3.8 hours.
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Interestingly, the response time we measured is comparable to image-level annota-

tion time (1.5s in Krishna et al. [2016]) indicating that most of the time is spent on the

visual search to find the object and not on clicking on it. This time is also in consistency

with our findings in Chapter 3 (1 second to find the object). Also, our requirement to

click on the center of the object does not slow down the annotators: our response

time is comparable to the time reported in Bearman et al. [2016] for click-anywhere

annotations.

We examined the response time as a function of the area of the target object and

we observed an interesting phenomenon. Response time does not increase when the

object becomes smaller, ranging from 1.7s for very small objects to 2.2s for object as

big as the whole image. We hypothesize that while small objects are more difficult to

find, estimating their center is easier than for large objects.

Error analysis. We evaluate the accuracy of the collected clicks by measuring their

distance from the true centers of the ground-truth object bounding boxes. In Figure 5.4

we show this error distance as a function of the square root of the object area. As

expected, the error distance in pixels increases as the object area increases. However,

it slightly drops as the object occupies the whole image. This is likely because such

images have truncated instances, which means the annotator needs to click in the center

of the image rather than the center of the object, an easier task. In general, the error

distances are quite low: 19.5 pixels on average with a median of 13.1 pixels (the images

are 300x500 on average).

Next, we want to understand the influence of using a qualification test, using quality

control, and using polygons or real examples during the qualification test. Therefore

we conducted a series of smaller-scale crowd-sourcing experiments on 400 images of

PASCAL VOC 2007 trainval. As Table 5.1 shows, using a qualification test reduces

average error substantially, from 43.8 to 29.4 pixels. Interestingly, using polygons

instead of real examples does not influence the error at all, demonstrating that our pro-

posed qualification test is well-suited to train annotators. Quality control, hiding two

evaluation images inside the task of annotating images, brings the error further down

to 21.2 pixels (on the full dataset we measure 19.5 pixels error). Finally, we note that

all four variants in Table 5.1 resulted in similar annotation time. Hence qualification

tests or quality control has no significant influence on the speed of the annotators.

Cost. We paid annotators $0.10 to annotate a batch of 20 images. Based on their mean

response time this results in a wage of about $9 per hour. The total cost for annotating
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Figure 5.5: Box center score Sbc on bicycle examples. (left): One-click annotation. (mid-

dle): Two-click annotation on the same instance. (right): Two-click annotation on different

instances. The values of each pixel in the heatmaps give the Sbc of an object proposal centered

at that pixel.

the whole trainval set of PASCAL VOC 2007 with two click annotations was $75.40

(or $37.70 for one click annotation).

5.4 Incorporating clicks into WSOL

We now present how we incorporate our click supervision into a reference Multiple

Instance Learning (MIL) framework, which is typically used in weakly supervised

object detection (WSOL) and was also explained in Section 4.4.2. All explanations

in this section consider working with one object class at a time, as we treat them

essentially independently.

5.4.1 Reference Multiple Instance Learning (MIL)

The input to MIL is a training set with positive images, which contain the target class,

and negative images, which do not. We represent each image as a bag of object pro-

posals extracted using Edge-Boxes [Zitnick and Dollár, 2014]. Following Girshick

et al. [2014]; Cinbis et al. [2016]; Bilen et al. [2014, 2015]; Song et al. [2014a]; Wang

et al. [2015], we describe each object proposals with a 4096-dimensional feature vec-

tor using the Caffe implementation [Jia, 2013] of the AlexNet CNN [Krizhevsky et al.,



5.4. Incorporating clicks into WSOL 89

2012]. We pre-trained the CNN on the ILSVRC [Russakovsky et al., 2015a] dataset

using only image-level labels (no bounding box annotations).

We iteratively build an SVM appearance model A by alternating between two steps:

(I) re-localization: in each positive image, we select the proposal with the highest

score given by the current appearance model A .

(II) re-training: we re-train the SVM using the current selection of proposals from

the positive images, and all proposals from negative images.

As initialization, in the first iteration we train the classifier using complete images

as positive training examples [Cinbis et al., 2014, 2016; Pandey and Lazebnik, 2011;

Russakovsky et al., 2012; Nguyen et al., 2009; Kim and Torralba, 2009].

Refinements. In order to obtain a competitive baseline, we apply again two refine-

ments to the standard MIL framework. First, we use multi-folding [Cinbis et al., 2016]

and second, we combine the score given by the appearance model A with a general

measure of “objectness” [Alexe et al., 2010] O.

Formally, at step (I) we linearly combine the scores A and O under the assumption

of equal weights. The score of each proposal p is given by Sap(p) = 1
2 ·A(p)+ 1

2 ·O(p).

Deep MIL. After MIL converges (typically within 10 iterations), we perform two addi-

tional iterations where during the step (II) we deeply re-train the whole CNN network,

instead of just an SVM on top of a fixed feature representation. During these iterations

we use Fast R-CNN [Girshick, 2015] as the appearance model A .

5.4.2 One-click supervision

Motivation. Click annotations on object centers derived using our crowd-sourcing

method of Section 5.3 provide a powerful cue for object position. In this section, we

improve the reference MIL framework by using the position of one single click c in

each image of the target class.

Box center score Sbc. Intuitively, simply selecting the object proposal whose center is

closest to the click would fail since annotators are not perfectly accurate. Instead, we

introduce a score function Sbc, which represents the likelihood of a proposal p covering

the object according to its center point cp and the click c

Sbc(p;c,sbc) = e
�kcp�ck2

2s2
bc (5.1)
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where kcp � ck indicates the Euclidean distance in pixels between c and cp. The stan-

dard deviation sbc controls how quickly the Sbc decreases as cp gets farther from c

(Figure 5.5).

Use in re-localization. We use the box center cue Sbc in the re-localization step (I) of

MIL (Section 5.4.1). Instead of selecting the proposal with the highest score accord-

ing to the score function Sap alone, we combine it with Sbc with a product: Sap(p) ·
Sbc(p;c,sbc). In Sec. 5.5.1 we show that this results in improved re-localization, which

in turn leads to better appearance models in the next re-training iteration, and ultimately

improves the final MIL outcome.

Use in initialization. We also use the click position to improve the MIL initializa-

tion. Instead of initializing the positive training samples from the complete images, we

now construct windows centered on the click while at the same time having maximum

size without exceeding the image borders. This greatly improves MIL initialization,

especially in cases where the position of the click is close to the image borders.

5.4.3 Two-click supervision

Motivation. While using two annotator clicks doubles the total annotation time com-

pared to one click, it allows us to estimate the object center even more accurately.

Moreover, we can estimate the object area based on the distance between the two

clicks.

Box center score Sbc. By averaging the positions of two clicks we can estimate the

object center more accurately. We simply replace c in Equation (5.1) with the average

of the two clicks c1 and c2.

However, in images containing multiple instances of the target class, the two an-

notators might click on different instances (Figure 5.5, right). To address this, we

introduce a distance threshold dmax beyond which the clicks are considered to target

different instances. In that case, we keep both clicks and use them both in Equa-

tion (5.1). Formally, if kc1 � c2k > dmax, then for each proposal p we use the nearest

of the two click to its center cp.

Box area score Sba. There is a clear correlation between the area of the object and

the click’s error distance (Figure 5.4). As errors made by two annotators are indepen-
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Figure 5.6: Box area score Sba. All windows used here have fixed aspect ratio and are centered

on the center of the object. The color of the windows shows the value of the Sba score. The

score is maximal (red) when the area of the proposal matches the estimated object area.

dent, the distance between their two clicks increases as the object area increases (on

average). Therefore we estimate the object area based on the distance between the two

clicks c1 and c2.

Let µ(kc1 � c2k) be a function that estimates the logarithm of the object area (we

explain how we learn this function in Sec. 5.4.4). Based on this, for each proposal p we

introduce a box area score Sba that represents the likelihood of p covering the object

according to the ratio between the proposal area and the estimated object area:

Sba(p;c1,c2,sba) = e
� (ap�µ(kc1�c2k))

2

2s2
ba (5.2)

Here ap is the logarithm of the proposal’s area, and (ap �µ) indicates the log ratio



92 Chapter 5. Training object class detectors with click supervision

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

0.1

0.2

Error distance

0 10 20 30 40 50 60 70

−7

−6

−5

−4

−3

−2

−1

0

|| c
1
 − c

2
 ||

lo
g

(r
e

la
tiv

e
 a

re
a

 o
f 

th
e

 o
b

je
ct

)

(a) (b)

Figure 5.7: (a) The distribution of errors that the annotators made during our qualification

test. (b) The relative area of the synthetic polygons (log scale) as a function of the distance

between two clicks. The red line shows the regressed function µ.

between the two areas. The standard deviation sba controls how quickly Sba decreases

as ap grows different from µ.

Figure 5.6 shows an example of the effect of the Sba score on proposals of various

areas. For illustration purposes, all proposals used here have a fixed aspect-ratio and

are centered on the object. The score is maximal when the area of the proposal matches

the estimated object area.

Use in re-localization. We now use all cues in the final score function for a proposal

p during the re-localization step (I) of MIL step:

S(p) = Sap(p) ·Sbc(p;c1,c2,sbc) ·Sba(p;c1,c2,sba) (5.3)

5.4.4 Learning score parameters

We exploit the clicks obtained from our qualification task on synthetic polygons to

estimate the hyper-parameters of our model: sbc (Equation (5.1)), dmax (Section 5.4.3),

sba (Equation (5.2)) and the function µ (Equation (5.2)).

Figure 5.7(a) shows the distribution of the annotators’ error distances during our

qualification test. We estimate sbc from this distribution. Also, in the same figure we

see that the maximum error distance is 70 pixels, hence we set dmax = 70. Figure 5.7(b)

shows the logarithm of the relative area of the synthetic polygons as a function of the

distance between the two clicks. We learn the function µ(kc1 � c2k) as a polynomial

regressor fit to this data (red line in Figure 5.7(b)). Finally, we set sba simply as the

average error of the area estimation made by the regressor on the polygons.
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Figure 5.8: Examples of objects localized on the trainval set of PASCAL VOC 2007 using our

one-click (blue) and two-click (green) supervision models. For each example, we also show the

localization produced by the reference MIL (red).
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5.5 Experimental results

5.5.1 Results on PASCAL VOC 2007

Dataset. We perform experiments on PASCAL VOC 2007 [Everingham et al., 2010],

which has 20 classes, 5,011 training images (trainval), and 4,952 test images. During

training we only use image-level labels. Unlike some previous WSOL work which re-

moves images with truncated and difficult objects [Cinbis et al., 2014, 2016; Deselaers

et al., 2010; Russakovsky et al., 2012; Wang et al., 2015], we use the complete trainval

set.

Object detection model. As object detector we use Fast R-CNN [Girshick, 2015]. In-

stead of Selective Search [Uijlings et al., 2013] we use EdgeBoxes [Dollar and Zitnick,

2014] as proposals, as they come with an objectness measure [Alexe et al., 2010] which

we use inside MIL. Unless stated otherwise, we use AlexNet [Krizhevsky et al., 2012]

as the underlying CNN architecture for our method and for all compared methods.

Evaluation. Given a training set with image-level labels (and possibly click annota-

tions), our goal is to localize the object instances in this set and to train good object

detectors. We quantify localization performance on the training set with Correct Lo-

calization (CorLoc), enabling direct comparison with WSOL methods [Bilen et al.,

2014, 2015; Bilen and Vedaldi, 2016; Cinbis et al., 2016; Deselaers et al., 2010; Kan-

torov et al., 2016; Russakovsky et al., 2012; Siva and Xiang, 2011; Wang et al., 2015].

CorLoc is the percentage of images in which the bounding-box returned by the algo-

rithm correctly localizes an object of the target class (i.e., IoU � 0.5). We measure the

performance of the trained object detector on the test set using mean average precision

(mAP). We quantify annotation effort in terms of actual human time measurements.

Compared methods. We compare our approach to the fully supervised alternative by

training the same object detector [Girshick, 2015] on the same training images, but

with manually annotated bounding boxes (one per class per image, for fair compari-

son). We also compare to a modern MIL-based WSOL technique (Section 5.4.1) run

on the same training images, but without click supervision.

For MIL WSOL, the effort to draw bounding boxes is zero. For fully supervised

learning we use the actual annotation times for ILSVRC from Su et al. [2012]: 35

seconds for drawing a single bounding box and verifying its quality (Section 2.1.6).
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These timings are representative for PASCAL VOC, since their images are of compa-

rable difficulty and quality [Russakovsky et al., 2015a].

We also compare to our human verification scheme [Papadopoulos et al., 2016]

presented in Chapter 4, and to various baselines.

Reference MIL. We run the reference MIL WSOL with k = 10 folds for 10 iterations,

after which it converges. It achieves 43.4% CorLoc on the training set. Applying two

deep MIL iterations (Section 5.4.1) on top of this improves to 44.5% CorLoc. The

detectors produced by this approach achieve 29.6% mAP on the test set (red dot in

Figure 5.9).

One-click supervision yields 73.3% CorLoc. The resulting object detector yields

45.9% mAP (yellow dot in Figure 5.9). Hence, at a modest extra annotation cost

of only 3.8 hours we achieve an absolute improvement of +28.8% CorLoc and +16.3%

mAP over the reference MIL.

Two-click supervision doubles the annotation time but it improves our model in two

ways: (1) we can estimate the object center more accurately, and (2) we can estimate

the object area based on the distance between the two clicks. Using the two-click

supervision only to improve the box center estimate Sbc brings +0.8% CorLoc and

+0.9% mAP over using one-click. Including also the box area estimate Sba leads to a

total improvement of +5.2% CorLoc and +3.2% mAP over one-click (78.5% CorLoc

and 49.1% mAP, orange dot in Figure 5.9). This shows that the box area estimate con-

tributes the most to the improvement brought by two-click over one-click supervision.

State-of-the-art WSOL approaches based on AlexNet architecture [Krizhevsky et al.,

2012] perform as follows. Wang et al. [2015]: 48.5% CorLoc and 31.6% mAP. Cinbis

et al. [2016]: 52.0% CorLoc and 30.2% mAP. Bilen and Vedaldi [2016]: 54.2% Cor-

Loc and 34.5% mAP. Our two-click supervision outperforms all these methods with

78.5% CorLoc and 49.1% mAP, at a modest extra annotation cost.

Full supervision achieves 55.5% mAP. Our two-click supervision comes remarkably

close (49.1% mAP). Importantly, full supervision requires 71 hours of annotation time.

Instead, our two-click approach requires only 7.6 hours, a reduction of 9⇥ (or 18⇥ for

our one-click approach).

Human verification [Papadopoulos et al., 2016] is shown as the blue line in Fig-
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Figure 5.9: Evaluation on PASCAL VOC 2007. CorLoc and mAP performance against hu-

man annotation time in hours(log-scale).

ure 5.9. Because the center-click annotations we use in this chapter were crowd-

sourced on Amazon Mechanical Turk, for a fair comparison, we use the crowd-sourced

human verification results of Section 4.6.4. Given the same annotation time, the one-

click supervision is clearly better than human verification scheme. When we use two-

click annotations, given the same annotation effort we achieve slightly higher CorLoc

and mAP.

Deeper CNN. When using VGG16 [Simonyan and Zisserman, 2015] instead of AlexNet,

the fully supervised training leads to 65.9% mAP. Our two-click model achieves 57.5%

mAP, while the reference MIL WSOL delivers 32.4% mAP.

Effect of click accuracy. We compare the center-click annotations we collected (Sec-

tion 5.3) to three alternatives: (oracle clicks): use the centers of the ground-truth boxes

as clicks; (random clicks): uniformly sample a pixel inside a ground-truth box; (click-

anywhere): we simulate a scenario where humans are instructed to click anywhere on
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the object, by mimicking the distribution of the publicly available click annotations

of Bearman et al. [2016] on PASCAL VOC 2012. We measure the distances from the

centers of the ground-truth boxes to their clicks. Then we build a regressor to predict

this distance based on the area of the object. Finally, we apply this regressor on VOC

2007 and displace the ground-truth object centers by the predicted distance.

For simplicity we use the alternative clicks in our one-click supervision model

(Section 5.4.2) in one additional re-localization iteration at the end of the reference

MIL (as opposed to using it in every iteration). For each of the three alternatives, we

use the oracle best value of the parameter sbc, while for our center-click annotations

we use the one learned on the synthetic polygons (Section 5.4.4). As a reference,

when used on top of MIL this way, our center-clicks lead to 67.2% CorLoc. Oracle

clicks give an upper bound of 73.7% CorLoc, while random clicks on the object do

not improve over MIL (43.4% CorLoc). Finally, the click-anywhere scenario achieves

55.5% CorLoc. Interestingly, using our center-clicks leads to +11.7% CorLoc, which

shows that they convey more information.

5.5.2 Results on MS COCO

Dataset. The MS COCO dataset [Lin et al., 2014] is more difficult than PASCAL

VOC, as demonstrated in Lin et al. [2014], featuring smaller objects on average, and

also more object classes (80). We use exactly the same evaluation setup as for PASCAL

VOC 2007 and evaluate CorLoc on the training set (82,783 images) and mAP on the

val set (40,504 images).

To confirm that MS COCO is significantly more difficult than PASCAL VOC [Lin

et al., 2014], in Figure 5.10 we show the distribution of the square root of the relative

object area for the two datasets. MS COCO contains substantially more very small

objects. For example, 32% of MS COCO objects occupy less than 1% of the image

area, while in PASCAL VOC 2007 this is true for only 5% of the objects.

Reference MIL. The reference MIL WSOL achieves 24.2% CorLoc and 8.9% mAP

(red dot in Figure 5.11). This is considerably lower than its performance on PASCAL

VOC 2007. Deselaers et al. [2010] also observed that the WSOL performance con-

sistently decreases from easy datasets with mostly big objects to hard datasets with

cluttered images with small objects.
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Figure 5.10: The distribution of the square root of the relative object area on the trainval set

of PASCAL VOC 2007 (left) and on the training set of MS COCO (right).

Click supervision. We did not collect real click annotations for COCO, but instead

simulated them. As we want to create a realistic scenario close to real annotators

clicks, we did not use the centers of the available ground-truth boxes as simulated

clicks. Assuming the annotator’s error distance only depends on the object area, we

use the findings of our error analysis on PASCAL VOC 2007 (Figure 5.4) to generate

realistic noisy simulated clicks for COCO.

Our simulated one-click supervision approach achieves double the performance of

reference MIL, reaching 51.8% CorLoc and 18.3% mAP (yellow dot in Figure 5.11).

Our simulated two-click supervision approach goes even beyond that, with 58.6% Cor-

Loc and 19.3% mAP (orange dot in Figure 5.11). Assuming the same annotation time

per click as in PASCAL VOC 2007, the total annotation time for one-click is 125 hours.

Full supervision. Training with full supervision requires 2,343 hours of annotation

time and leads to 24.0% mAP.

Human verification [Papadopoulos et al., 2016]. In Chapter 4 of the thesis we did

not collect real human verification responses on COCO. Thus, we simulate here the

human verification responses by sampling them according to the error distribution of

expert humans on PASCAL VOC 2007 (see Figure 4.10). This creates a realistic sim-

ulation. The CorLoc and mAP of this scheme can be seen in Figure 5.11 (blue lines).

Our two-click supervision approach reaches about the same CorLoc as our simulated

human verification scheme of Chapter 4 (58.3%) and it performs a bit better in terms

of mAP (19.3% vs 18.8%). Importantly, it takes about 3.5⇥ less total annotation time.

From another perspective, given the same annotation time (250 hours), our two-click

supervision approach outperforms the human verification one by +16% CorLoc and

+4% mAP. Hence, on difficult datasets with small objects our proposed center-click
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Figure 5.11: Evaluation on MSCOCO. CorLoc and mAP performance against human annota-

tion time in hours(log-scale).

annotation scheme has an edge, as the efficiency of our human verification scheme of

Chapter 4 degrades, while the benefits of click supervision remain. This happens prob-

ably because our initial base model (reference MIL) is weak and performs poorly on

COCO. In the beginning of the verification process a lot of boxes are judged as wrong.

This results in training weaker object detectors than we had on PASCAL VOC that

leads again in wrong detections in the following iterations. In Section 7.2, we discuss

how one can improve the performance of our models on difficult datasets.

5.6 Center clicking with an eye tracker

In this chapter, we proposed annotating objects by asking the annotators to simply

(mouse-)click on the object center. In this section, we perform the same annotation

task using a portable eye tracker and ask the annotators to simply look at the object

center instead of mouse-clicking on it. The annotators are asked to press a button to

signal that they found the center. The position of their last eye fixation before they press

the button is the center-fixation. We use the center-fixations instead of the center-clicks

in our method of Section 5.4 to improve the standard WSOL framework.

Intuitively, obtaining center-fixations will be faster than center-clicking as the an-

notators will not waste time to move the mouse on the object center. However, one
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should expect that center-fixations will not be as accurate as the center clicks.

In Section 5.6.1, we describe how we collected the center-fixations with a portable

eye tracker. In Section 5.6.2, we show results on incorporating center-fixations into

WSOL and we compare their performance to the center-clicking scheme.

5.6.1 Collecting center-fixations

Procedure. The procedure of collecting the center-fixations is similar to the one de-

scribed in Section 5.3 for collecting the center-clicks. Our annotators are given an

image and the name of the target class (e.g., cat). They are instructed to “imagine

a perfectly tight rectangular box around the object, look at the center of this box and

press a button”. Note that we collect center-fixations in an in-house experiment instead

of crowd-sourcing them as in Section 5.3.

Data collection started with a 12-point calibration and validation. After the cali-

bration procedure, the annotators went through a simple training phase. During this

phase, they were asked to annotate (i.e., look at the center of a target object) a batch of

15 consecutive images. After each image, they receive an immediate feedback on how

well they performed. We display the actual center, the point at which they were looking

and the ground-truth bounding box. The goal of this phase it to make the annotators

familiar with the equipment (eye tracker), the task and the interface.

After this training stage, the annotators proceed to the main annotation phase. For

increased efficiency, they were shown images from a single object class at a time (for

more details see Section 4.5.2). Re-calibration of the eye-tracker was performed every

15 images. This helped in minimizing calibration drift.

Apparatus. The experiment was conducted in a sound-attenuated room; participants

were seated 30 cm from the screen of a 13” Macbook pro (mid 2012) while their eye

movements were recorded using an Eye Tribe, which sampled both eyes at the rate of

60 Hz. A chin rest was used to minimize participants head movements and improve

recording accuracy. Button press was recorded using a Logitech keyboard. Note that

in contrast to the very expensive Eyelink 2000 eye tracker used for collecting the eye

tracking data in Chapter 3, here we use a very cheap ($100) and portable eye tracker

that can simply be attached on a tablet or a laptop.

Data collection. We collected center-fixation annotations for 5 classes (bus, cow, din-
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ingtable, horse, tvmonitor) of PASCAL VOC 2007 [Everingham et al., 2007], a total

of 1,070 images. Each image was annotated by two different annotators.

Annotation time. For this subset of PASCAL VOC 2007, the mean response time per

image was 1.96s for center-clicks. For center-fixations we measured 1.18s per image,

which is a speed-up of 1.7⇥. This validates our hypothesis that obtaining center-

fixations is faster than center-clicking as the annotators do not waste any time to move

the mouse and click on the object center. The task of estimating the center of the object

and look at it is extremely fast, as we know that the visual search time to find the object

is about 1s (see findings of Chapter 3).

Error analysis of center-fixations. We evaluate here the accuracy of the collected

fixations by measuring their distance from the true centers of the ground-truth object

bounding boxes. This error distance is 36.2 pixels on average with a median of 25.6

pixels. As a reference, the mean error distance of center-clicking on the same set of

images was 19.2 pixels. We observe that center-fixations are much more noisy than

center clicks. This difference in accuracy is due to a lot of factors: there is definitely a

measurement error of fixations due to bad calibration; the mouse-pointer of the clicking

task helps the annotators to be more accurate; the annotator training also plays an

important role (note that the training stage described here is simpler than the one in

Section 5.3.

5.6.2 Incorporating center-fixations into WSOL

In this section, we incorporate the collected center-fixations into a WSOL framework

and we compare the results to the corresponding models that use center-clicking (Chap-

ter 5).

Data and Evaluation. We perform experiments on 5 classes of the PASCAL VOC

2007 [Everingham et al., 2007] dataset,resulting in 1070 trainval images. We quantify

localization performance on this subset with Correct Localization (CorLoc).

Results. For simplicity, we use the center-fixations into our one-click and two-click

supervision models (Section 5.4) in one additional re-localization iteration at the end

of the reference MIL (as opposed to using it in every iteration). For the center-fixation

models, we use the values of hyper-parameters learned for our center-click annotations

(Section 5.4.4).
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Figure 5.12: CorLoc performance against human annotation time in minutes. We compare

the one-fixation (blue dot) and two-fixation (purple dot) supervision model to the reference

MIL (red dot), the one-click (yellow dot) and the two-click (orange dot) supervision model

The CorLoc performance of all models against human annotation time in minutes

is shown in Figure 5.12. The reference MIL yields 47.1% CorLoc. The one-fixation

supervision model leads to 65.3%, a +18.2 improvement with only 21 minutes of extra

annotation time. The two-fixation supervision doubles the annotation time (42 min-

utes) and reaches 67.0%. The one-click supervision requires 35 minutes of click anno-

tation and leads to 73.8%, while the two-click supervision model leads to 76.6% with

69 minutes of annotation time.

Conclusions. In this section, we proposed annotating objects by asking the annotators

to simply look at the object center and press a button. We tracked their eye movements

with a very cheap and portable eye-tracker while they performed this task. Our model

that incorporates center-fixations on a WSOL framework significantly improves the

CorLoc performance by +18.2% with one fixation and by +19.9% with two fixations

with only a modest extra annotation cost. This demonstrates our point in Section 3.5.1,

that eye tracking data collected during a visual search task can be incorporated into a

WSOL framework to further improve object localizations.

The task was performed very efficiently by human observers (1.2s per object per
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annotator). In fact, it is 1.7⇥ faster than the center (mouse-)clicking task. However,

the accuracy of the center fixations is lower compared to the center clicks and this is

why our models with mouse clicks perform better than those incorporating fixations.

We consider these preliminary results of center-fixations quite promising. Training

the annotators properly for this task (i.e., similar training with center clicking based on

a qualification test) can further improve the accuracy of the annotations. Also, learning

the hyper-parameters of the model (Section 5.4.4) on these noisy fixations rather than

on center-clicks can significantly improve the performance of the fixation supervision

model.

Acknowledgments. We are grateful to Prateek Bawa for collecting the eye tracking

data of this section during his undergraduate final-year project [Bawa, 2017].

5.7 Conclusions

We proposed center-click annotation as a way of training object class detectors and

showed that crowd-sourced annotators can perform this task accurately and fast (1.9s

per object). In extensive experiments on PASCAL VOC and MS COCO we have

shown that our center-click scheme dramatically improves over weakly supervised

learning of object detectors, at a modest additional annotation cost. Moreover, we

have shown that it reduces total annotation time by 9⇥-18⇥ compared to manually

drawing bounding boxes, while still delivering high-quality detectors. Finally, we have

shown that our center-click annotation scheme compares favorably against our human

verification scheme (Chapter 4).

We hypothesize that our center-clicking framework is particularly well-suited for

datasets that are harder than PASCAL, as the performance of baseline detectors will

degrade, but the benefit of one-click supervision will remain. In this Chapter, we

presented initial evidence for this claim using simulations on the challenging COCO

dataset.
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Submit 

Figure 6.1: Annotating an instance of motorbike: (a) The conventional way of drawing a

bounding box. (b) Our proposed extreme clicking scheme.

6.1 Introduction

Drawing the bounding boxes traditionally used for object detection is very expensive.

Even the efficient protocol of Su et al. [2012] requires 35s to annotate one box (more

details in Sec. 6.2). Why does it take so long to draw a bounding box? Fig 6.1a shows

the typical process [CrowdFlower, 2016; Everingham et al., 2010; Jain and Grauman,

2013; Russakovsky et al., 2015b; Spare5/MightyAI, 2017; Su et al., 2012]. First the

annotator clicks on a corner of an imaginary rectangle tightly enclosing the object (say

the bottom-right corner). This is challenging, as these corners are typically not on the

object. Hence the annotator needs to find the relevant extreme points of the object

(the bottom point and the rightmost point) and adjust the x- and y-coordinates of the

corner to match them. After this, the annotator clicks and drags the mouse to the

diagonally opposite corner. This involves the same process of x- and y-adjustment, but

now based on a visible rectangle. After the rectangle is adjusted, the annotator clicks

again. He/she can make further adjustments by clicking on the sides of the rectangle

and dragging them until the box is tight on the object. Finally, the annotator clicks a

“submit” button.
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From a cognitive perspective, the above process is suboptimal. The three steps

(clicking on the first corner, dragging to the second corner, adjusting the sides) effec-

tively constitute three distinct tasks. Each task requires attention to different parts of

the object and using the mouse differently. In effect, the annotator is constantly task-

switching, a process that is cognitively demanding and is correlated with increased

response times and errors rates [Monsell, 2003; Rubinstein et al., 2001]. Further-

more, the process involves a substantial amount of mental imagery: the rectangle to

be drawn is imaginary, and so are the corner points. Mental imagery also has a cogni-

tive cost, e.g. in mental rotation experiments, response time is proportional to rotation

angle [Kosslyn et al., 1995; Shepard and Metzler, 1971].

In this chapter we propose an annotation scheme which avoids task switching and

mental imagery, resulting in greatly improved efficiency. We call our scheme extreme

clicking: we ask the annotator to click on four extreme points of the object, i.e. points

belonging to the top, bottom, left-most, and right-most parts of the object (Fig 6.1b).

This has several advantages: (1) Extreme points are not imaginary, but are well-defined

physical points on the object, which makes them easy to locate. (2) No rectangle is in-

volved, neither real nor imaginary. This further reduces mental imagery, and avoids

the need for detailed instructions defining the notion of a bounding box. (3) Only a

single task is performed by the annotator thus avoiding task switching. (4) No sepa-

rate box adjustment step is required. (5) No “submit” button is necessary; annotation

terminates after four clicks.

Additionally, extreme clicking provides more information than just box coordi-

nates: we get four points on the actual object boundary. We demonstrate how to incor-

porate them into GrabCut [Rother et al., 2004], to deliver more accurate segmentations

than when initializing it from bounding boxes [Rother et al., 2004]. In particular, Grab-

Cut relies heavily on the initialization of the object appearance model (e.g. [Kuettel and

Ferrari, 2012; Rother et al., 2004; Wang and Cohen, 2005]) and on which pixels are

clamped to be object/background. When using just a bounding box, the object ap-

pearance model is initialized from all pixels within the box (e.g. [Ferrari et al., 2008;

Kuettel and Ferrari, 2012; Rother et al., 2004]). Moreover, it typically helps to clamp

a smaller central region to be object [Ferrari et al., 2008]. Instead, we first expand

our four object boundary points to an estimate of the whole contour of the object. We

use this estimate to initialize the GrabCut object appearance model. Furthermore, we

skeletonize the estimate and clamp the resulting pixels to be object.

We perform extensive experiments on PASCAL VOC 2007 and 2012 using crowd-
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Figure 6.2: The workflow of our crowd-sourcing protocol for collecting extreme click anno-

tations on images. The annotators read a set of instructions and then go through an interactive

training stage that consists of a qualification test at the end of which they receive a detailed

feedback on how well they performed. Annotators who successfully pass the test can proceed

to the annotation stage. In case of failure, they are allowed to repeat the test as many times as

they want until they succeed.

sourced annotations which demonstrate: (1) extreme clicking only takes 7s seconds

per box, 5⇥ faster than the traditional way of drawing boxes [Su et al., 2012]; (2)

extreme clicking leads to high-quality boxes on a par with the original ground-truth

boxes drawn the traditional way; (3) detectors trained on boxes generated using ex-

treme clicking perform as well as those trained on the original ground-truth; (4) incor-

porating extreme points into GrabCut [Rother et al., 2004] improve object segmenta-

tions by 2%-4% mIoU over initializing it from bounding boxes; (5) semantic segmen-

tations models trained on segmentations derived from extreme clicking outperform

those trained on segmentations generated from bounding boxes by 2.6% mIoU.

6.2 Related work

More details about related work for drawing a bounding box can be found in Sec-

tion 2.1.6. More details about WSOL or other ways to reduce annotation effort for

training object class detectors can be found in Sections 2.2 and 2.3. We focus here on

object segmentation work, which is not covered in previous parts of the thesis.

Object segmentations are significantly more expensive to obtain than bounding

boxes. The creators of the SBD dataset [Hariharan et al., 2011] merged five anno-

tations per instance, resulting in a total time of 315s per instance. For COCO [Lin
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et al., 2014], 79s per instance were required for drawing object polygons, excluding

verifying correctness and possibly redrawing. To reduce annotation time many inter-

active segmentation techniques have been proposed, which require the user to input

either a bounding box around the object [Lempitsky et al., 2009; Rother et al., 2004;

Wu et al., 2014], or scribbles [Bai and Sapiro, 2009; Duchenne et al., 2008; Freedman

and Zhang, 2005; Grady, 2006; Gulshan et al., 2010; Lempitsky et al., 2009; Price

et al., 2010; Veksler, 2008; Vicente et al., 2008; Yang et al., 2010], or clicks [Jain

and Grauman, 2016a; Wang et al., 2014b]. Most of this work is based on the seminal

GrabCut algorithm [Rother et al., 2004], which iteratively alternates between estimat-

ing appearance models (typically Gaussian Mixture Models [Blake et al., 2004]) and

refining the segmentation using graph cuts [Boykov and Kolmogorov, 2004]. The user

input is typically used to initialize the appearance model and to clamp some pixels to

background. In this chapter, we incorporate extreme clicks into GrabCut [Rother et al.,

2004], improving the appearance model initialization and automatically selecting good

seed pixels to clamp to object.

6.3 Collecting extreme clicks

In this section, we describe our crowd-sourcing framework for collecting extreme click

annotations (Figure 6.2). Annotators read a simple set of instructions (Section 6.3.1)

and then go through an interactive training stage (Section 6.3.2). Those who success-

fully pass the training stage can proceed to the annotation stage (Section 6.3.3).

6.3.1 Instructions

The annotators are given an image and the name of a target object class. They are

instructed to click on four extreme points (top, bottom, left-most, right-most) on the

visible part of any object of this class. They can click the points in any order. In order

to let annotators know approximately how long the task will take, we suggest a total

time of 10s for all four clicks. This is an upper bound on the expected annotation time

that we estimated from a small pilot study.

Note that our instructions are extremely simple, much simpler than those necessary

to explain how to draw a bounding box in the traditional way (e.g. [Russakovsky et al.,

2015b; Su et al., 2012]). They are also simpler than instructions required for verifying

whether a displayed bounding box is correct [Russakovsky et al., 2015b; Su et al.,



110 Chapter 6. Extreme clicking for efficient object annotation

2012]. That requires the annotator to imagine a perfect box on the object, and to

mentally compare it to the displayed one (Section 4.5.2).

6.3.2 Annotator training

After reading the instructions, the annotators go through the training stage. They have

to complete a qualification test, at the end of which they receive detailed feedback on

how well they performed. Annotators who successfully pass this test can proceed to the

annotation stage. In case of failure, annotators can repeat the test until they succeed.

Qualification test. A qualification test is a good mechanism for enhancing the quality

of crowd-sourcing data and for filtering out bad annotators and spammers [Andriluka

et al., 2014; Endres et al., 2010; Johnson and Everingham, 2011; Krause et al., 2013].

Some annotators do not pay attention to the instructions or do not even read them.

Qualification tests have been successfully used to collect image labels, object bounding

boxes, and segmentations for some of the most popular datasets (e.g., COCO [Lin et al.,

2014] and Imagenet [Russakovsky et al., 2015a; Su et al., 2012]).

The qualification test is designed to mimic our main task of clicking on the extreme

points of objects. We show the annotator a sequence of 5 different images with the

same object class and ask them to carry out the extreme clicking task.

Feedback. The qualification test uses a small pool of images with ground-truth seg-

mentation masks for the objects, which we employ to automatically validate the anno-

tator’s clicks and to provide feedback (Figure 6.2, middle part). We take a small set of

qualification images from a different dataset than the one that we annotate.

In the following, we explain the validation procedure for the top click (the other

three cases are analogous). We ask the annotator to click on a top point on the object,

but this point is not necessarily uniquely defined. Depending on the object shape,

there may be multiple points that are equivalent, up to some tolerance margin (e.g.

the top of the dog’s head in Figure 6.3, top row). Clearly, clicking on any of these

points is correct. The area in which we accept the annotator’s click is derived from

the segmentation mask. First, we find the pixels with the highest y-coordinate in it

(there might be multiple such pixels). Then, we select all pixels in the mask with y-

coordinates within 10 pixels of any of these top pixels (red area in Figure 6.3, middle

column). Finally, we also include in the accepted area all image pixels within 10 pixels

of any of the selected pixels in the segmentation mask (Figure 6.3, right column). Thus
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qualification image 
extreme areas of 

segmentation mask  
accepted areas of 

qualification image 

Figure 6.3: Qualification test. (Left) Qualification test examples of the dog and cat class.

(Middle) The figure-ground segmentation masks we use to evaluate annotators’ extreme clicks

during the training stage. The pixels of the four extreme areas of the mask are marked with

colors. (Right) The accepted areas for each extreme click and the click positions as we display

them to the annotators as feedback.

the accepted area includes all top pixels in the mask, plus a tolerance region around

them, both inside and outside the mask.

After the annotators finish the qualification test, they receive a feedback page with

all the examples they annotated. For each image, we display the annotator’s four clicks,

and the accepted areas for each click (Figure 6.3 right column).

Success or failure. The annotators pass the qualification test if all their clicks on all 5

qualification images are inside the accepted areas. Those that pass the test are recorded

as qualified annotators and can proceed to the main annotation stage. A qualified anno-

tator never has to retake the qualification test. In case of failure, annotators are allowed

to repeat the test as many times as they want. The combination of automatically pro-

viding rich feedback and allowing annotators to repeat the test makes the training stage

interactive and highly effective. Annotators that have reached the desired level of qual-

ity can be expected to keep it throughout the annotation [Hata et al., 2017].
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6.3.3 Annotating images

In the annotation stage, annotators are asked to annotate small batches of 10 consecu-

tive images. To increase annotation efficiency, the target class for all the images within

a batch is the same. This means annotators do not have to re-read the class name

for every image and can use their prior knowledge of the class to find it rapidly in

the image [Torralba et al., 2006]. More generally, it avoids task-switching which is

well-known to increase response time and decrease accuracy [Rubinstein et al., 2001;

Monsell, 2003].

Quality control. Quality control is a common process when crowd-sourcing image

annotations [Bearman et al., 2016; Kovashka and Grauman, 2015; Lin et al., 2014;

Russakovsky et al., 2015a; Russell et al., 2008; Sorokin and Forsyth, 2008; Su et al.,

2012; Vondrick et al., 2013; Welinder et al., 2010]. We control the quality of the anno-

tation by hiding one evaluation image for which we have a ground-truth segmentation

inside a 10-image batch, and monitor the annotator’s accuracy on it (golden question).

Annotators that fail to click inside the accepted areas on this evaluation image are not

able to submit the task. We do not do any post-processing rejection of the submitting

data.

6.4 Object segmentation from extreme clicks

Extreme clicking results not only in high-quality bounding box annotations, but also

in four accurate object boundary points. In this section we explain how we use these

boundary points to improve the creation of segmentation masks from bounding boxes.

We cast the problem of segmenting an object instance in image I as a pixel labeling

problem. Each pixel p 2 I should be labeled as either object (lp = 1) or background

(lp = 0). A labeling L of all pixels represents the segmented object. Similar to Rother

et al. [2004], we employ a binary pairwise energy function E defined over the pixels

and their labels.

E(L) = Â
p

U(lp)+Â
p,q

V (lp, lq) (6.1)

U is a unary potential that evaluates how likely a pixel p is to take label lp accord-

ing to the object and background appearance models, while the pairwise potential V

encourages smoothness by penalizing neighboring pixels taking different labels.

Initial object surface estimate from extreme clicks. For GrabCut to work well,
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Figure 6.4: Visualization of input cues and output of GrabCut. First row shows input with

annotator’s extreme clicks. Second row shows output of edge detector [Dollar and Zitnick,

2013]. Third row shows our inputs for GrabCut: the pixels used to create background appear-

ance model (red), the pixels used to create the object appearance model (bright green), the

initial boundary estimate (magenta), and the skeleton pixels which we clamp to have the object

label (dark green). Fourth row shows the output of GrabCut when using our new inputs, while

the last row shows the output when using only a bounding box.

it is important to have a good initial estimate of the object surface to initialize the

appearance model. Additionally, it helps to clamp certain pixels to object [Kuettel

and Ferrari, 2012]. We show how the four collected object boundary points can be

exploited to do both.
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Figure 6.5: Extra examples of input cues and output of GrabCut (For more details see caption

of Figure 6.4.

In particular, for each pair of consecutive extreme clicks (e.g. leftmost-to-top, or

top-to-rightmost) we find the path connecting them which is most likely to belong to

the object boundary. For this purpose we first apply a strong edge detector [Dollar

and Zitnick, 2013] to obtain a boundary probability ep 2 [0,1] for every pixel p of the

image (second row of Figures 6.4, 6.5). We then define the best boundary path between

two consecutive extreme clicks as the shortest path whose minimum edge-response is
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the highest (third row of Figures 6.4 , 6.5, magenta). In practice, we compute this

path by thresholding the output of the edge detector with a high value and iteratively

reduce it until a continuous line that connects the two extreme clicks exists. We found

this objective function to work better than others, such as minimizing Âp(1� ep) for

pixels p on the path. The resulting object boundary paths yield an initial estimate of

the object outlines.

We use the surface within the boundary estimates (shown in green in the third

row of Figures 6.4, 6.5) to initialize the object appearance model used for U in Equa-

tion (6.1). Furthermore, from this surface we obtain a skeleton using standard mor-

phology (shown in dark green in third row of Figures 6.4, 6.5). This skeleton is very

likely to be object, so we clamp its pixel-labels to be object (ls = 1 for all pixels s on

the skeleton).

Appearance model. As in classic GrabCut [Rother et al., 2004], the appearance model

consists of two GMMs, one for the object (used when lp = 1) and one for the back-

ground (used when lp = 0). Each GMM has five components, where each is a full-

covariance Gaussian over the RGB color space.

Traditional interactive segmentation techniques [Lempitsky et al., 2009; Rother

et al., 2004; Wu et al., 2014] start from a manually drawn bounding box and estimate

the initial appearance models from all pixels inside the box (object model) and all pix-

els outside it (background model). However, this may be suboptimal: since we are

trying to segment the object within the box, intuitively only the immediate background

is relevant, not the whole image. Indeed, we improved results by using a small rect-

angular ring around the bounding box for initializing the background model (see third

row Figures 6.4, 6.5 in red). Furthermore, not all pixels within the box belong to the

object. But given only a bounding box as input, the best is to still use the whole box

to initialize the object model. Therefore, in our baseline GrabCut implementation, the

background model is initialized from the immediate background and the object model

is initialized from all pixels within the box.

However, because we have extreme clicks we can do better. We use them to ob-

tain an initial object surface estimate (described above) from which we initialize the

object appearance model. Fig. 6.6 illustrates how this improves the unary potentials U

resulting from the appearance models.

Clamping pixels. GrabCut sometimes decides to label all pixels either as object or

background. To prevent this, one can clamp some pixels to a certain label. For the
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Figure 6.6: Posterior probability of pixels belonging to object. For both rows the background

appearance model is created by using an area outside the initial box (see Figure 6.5). In the

first row the object model is created using the area inside the initial box. In the second row

the object model is created from the object surface estimated using extreme clicks (Figure 6.5,

third row in light-green). Predictions from the appearance model using extreme clicks are

visibly better.

background, all pixels outside the bounding box are typically clamped to background.

For the object, one possible approach is to clamp a small area in the center of the

box [Ferrari et al., 2008]. However, there is no guarantee that the center of the box

is on the object, as many objects are not convex. Moreover, the size of the area to be

clamped is not easy to set.

In this paper, we estimate the pixels to be clamped by skeletonizing the object

surface estimate derived from our extreme clicks (described above). In Sec. 6.6 we

show how our proposed object appearance model initialization and clamping scheme

affect the final segmentation quality.

Pairwise potential V . The summation over (p,q) in (6.1) is defined on an eight-

connected pixel grid. Usually, this penalty depends on the RGB difference between

pixels, being smaller in regions of high contrast [Boykov and Jolly, 2001; Blake et al.,

2004; Gulshan et al., 2010; Lempitsky et al., 2009; Rother et al., 2004; Veksler, 2008].

In this paper, we instead use the sum of the edge responses of the two pixels given by

the edge detector [Dollar and Zitnick, 2013]. In Sec. 6.6 we evaluate both pairwise

potentials and show how they affect the final segmentation.

Optimization. After the initial estimation of appearance models, we follow Rother
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Annotation quality Detector performance Annotation time

w.r.t. GT SegBoxes (mAP)

Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

PASCAL Extreme clicks 88 92 98 56 66 14.3 7.0

VOC 2007 PASCAL GT Boxes 88 93 98 56 66 70.0 34.5

PASCAL Extreme clicks 87 91 95 52 62 16.8 7.2

VOC 2012 PASCAL GT Boxes 87 90 96 52 62 79.8 34.5

Table 6.1: Comparison of extreme clicking and PASCAL VOC ground-truth.

Annotation quality Detector performance Annotation time

w.r.t. GT Boxes (mAP)

Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

Extreme clicks 88 94 97 56 66 14.3 7.0

Human verification
58 34 76 47 54 8.9 4.4

PASCAL (Chapter 4)

VOC Center-clicking
64 45 79 49 58 7.6 3.8

2007 (Chapter 5)

WSOL
– – 54 35 35 0 0

Bilen and Vedaldi [2016]

ILSVRC box drawing in
– 71 – – – – 12.3

(subset) Russakovsky et al. [2015b]

Table 6.2: Comparison of extreme clicking and alternative fast annotation approaches.

et al. [2004] and alternate between finding the optimal segmentation L given the ap-

pearance models, and updating the appearance models given the segmentation. The

first step is solved globally optimally by minimizing (6.1) using graph-cuts [Boykov

and Kolmogorov, 2004], as our pairwise potentials are submodular. The second step

simply fits GMMs to labeled pixels.

6.5 Extreme Clicking Results

We implement our annotation scheme on Amazon Mechanical Turk (AMT) and collect

extreme click annotations for both the trainval set of PASCAL VOC 2007 [Everingham

et al., 2007] (5011 images) and the training set of PASCAL VOC 2012 [Everingham

et al., 2012] (5717 images), which contain 20 object categories. For every image we

annotate a single instance per class (if present in the image), which enables direct

comparison to other methods described below. We compare methods both in terms of

efficiency and quality.

Compared methods. Our main comparisons are to the existing ground-truth bounding
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boxes of PASCAL VOC. As discussed in Sec. 2.1.6, we use 34.5s as the reference time

necessary to produce one such high quality bounding box by drawing it the traditional

way [Su et al., 2012].

At the other extreme, it is possible to obtain lower quality bounding boxes auto-

matically at zero extra costs by using weakly supervised methods, which only input

image-level labels. We compare to the recent method of Bilen and Vedaldi [2016].

We also compare to three methods which strike a trade-off between accuracy and

efficiency: Russakovsky et al. [2015b], our proposed human verification scheme (Chap-

ter 4) and our proposed center-clicking scheme (Chapter 5). In Russakovsky et al.

[2015b], manual box drawing is part of a complex computer-assisted annotation sys-

tem. Importantly, Russakovsky et al. [2015b] report both annotation time and quality,

enabling proper comparisons. In Chapter 4 we proposed an annotation scheme that

only requires annotators to verify boxes automatically generated by a learning algo-

rithm [Papadopoulos et al., 2016], while in Chapter 5 we propose another efficient an-

notation scheme that only requires annotators to click on the center of the objects [Pa-

padopoulos et al., 2017].

Evaluation measures. For evaluating efficiency we report time measurements, both

in terms of annotating the whole dataset and per instance.

We evaluate the quality of bounding boxes with respect to the PASCAL VOC

ground-truth. We do this with respect to the ground-truth bounding boxes (GT Boxes),

but also with respect to bounding boxes which we fit to the ground-truth segmentations

(GT SegBoxes). We quantify quality by intersection-over-union (IoU) [Everingham

et al., 2010], where we measure the percentage of bounding boxes we annotated per

object class with IoU greater than 0.5 and 0.7, and then take the mean over all classes

(IoU>0.5, IoU>0.7). In addition, we calculate the average IoU for all instances of a

class and take the mean over all classes (mIoU).

As an additional measure of accuracy we measure detector performance using Fast

R-CNN [Girshick, 2015], trained either on our extreme click boxes or on the PASCAL

GT Boxes.

6.5.1 Results on quality and efficiency

PASCAL ground-truth boxes vs. extreme clicks. Table 6.1 reports the results. Hav-

ing two sets of ground-truth boxes enables us to measure the agreement among the
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expert annotators that created PASCAL. Comparing GT Boxes and GT SegBoxes re-

veals this agreement to be at 88% mIoU on VOC 2007. Moreover, 93% of all GT

Boxes have IoU > 0.7 with their corresponding GT SegBox. This shows that the

ground-truth annotations are highly consistent, and these metrics represent the quality

of the ground-truth itself. Similar findings apply to VOC 2012.

Interestingly, the boxes derived from our extreme clicks achieve equally high met-

rics, when compared to the PASCAL GT SegBoxes. Therefore our extreme click anno-

tations yield boxes with a quality within the agreement among expert-annotators using

the traditional way of drawing. To get a better feeling for such quality, if we perturb

each of the four coordinates of the GT Boxes by 4 pixels, the resulting boxes also have

88% mIoU with the unperturbed annotations. Qualitative examples are shown in the

appendix A.

To further demonstrate the quality of extreme clicking, we train Fast R-CNN [Gir-

shick, 2015] using either PASCAL GT Boxes or extreme click boxes. We train on

PASCAL VOC 2007s trainval set and test on its test set, then we train on VOC 2012s

train and test on its val set. We experiment using AlexNet [Krizhevsky et al., 2012]

and VGG16 [Simonyan and Zisserman, 2015]. Performance when training from GT

Boxes or from our boxes is identical on both datasets and using both base networks.

Annotation efficiency. In terms of annotation efficiency, extreme clicks are 5⇥ cheaper:

7.0s instead of 34.5s. This demonstrates that extreme clicking costs only a fraction of

the annotation time of the widely used box-drawing protocol [CrowdFlower, 2016; Ev-

eringham et al., 2010; Russakovsky et al., 2015b; Spare5/MightyAI, 2017; Su et al.,

2012], without any compromise on quality.

Human verification (Chapter 4) vs. extreme clicks. Table 6.2 compares extreme

clicks to our human verification scheme of Chapter 4 on PASCAL VOC 2007. For a

fair comparison, we compare to using human verifications by AMT annotators. While

verification is 1.6⇥ faster, our bounding boxes here are much more accurate (97%

correct at IoU>0.5, compared to 76% for human verification). Additionally, detector

performance at test time is 9%-12% mAP higher for extreme clicking.

Center clicks (Chapter 5) vs. extreme clicks. Table 6.2 also compares extreme clicks

to our center clicks of Chapter 4 on PASCAL VOC 2007. As in Chapter 5 we use only

two center-clicks as opposed to the four extreme clicks here. Center clicking is 1.9⇥
faster than extreme clicking. However, extreme clicking bounding boxes are much
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more accurate (97% correct at IoU>0.5, compared to 79% for center clicking) leading

to higher detector performance at test time (7%-8% mAP higher). More importantly,

we expect only a small gain in performance of our center clicking scheme by increasing

the number of center clicks to four. This is because the four center clicks will only

allow as to estimate the object center and area even more accurately. This will not

bring any truly new information.

Weak supervision vs. extreme clicks. Weakly supervised methods are extremely

cheap in human supervision time. However, the recent work of Bilen and Vedaldi

[2016] reports 35% mAP using VGG16, which is only about half the result brought by

extreme clicking (66% mAP, Table 6.2).

Box drawing [Russakovsky et al., 2015b] vs. extreme clicks. Finally, we compare

to Russakovsky et al. [2015b] in Table 6.2. This is an approximate comparison as

measurements of their box-drawing component are done on an unspecified subset of

ILSVRC 2014. However, as ILSVRC and PASCAL VOC are comparable in both qual-

ity of annotations and difficulty of the dataset [Russakovsky et al., 2015a], this com-

parison is representative. In Russakovsky et al. [2015b] they report 12.3s for drawing a

bounding box, where 71% of the drawn boxes have an IoU>0.7 with the ground-truth

box. This suggests that bounding boxes can be drawn faster than reported in Su et al.

[2012] but this comes with a significant drop in quality. In contrast, extreme clicking

costs 7s per box and 91%-94% of those boxes have IoU>0.7. Hence our protocol to

annotate bounding boxes is both faster and more accurate.

6.5.2 Additional analysis

We now report several additional experiments and measurements providing additional

insights.

Oracle best window proposals [Zitnick and Dollár, 2014]. Many weakly super-

vised methods (e.g. [Siva and Xiang, 2011; Deselaers et al., 2012; Russakovsky et al.,

2012; Cinbis et al., 2014; Bilen and Vedaldi, 2016]) are based on object proposals such

as Alexe et al. [2010]; Uijlings et al. [2013]; Zitnick and Dollár [2014]. Therefore,

it is interesting to discover what the theoretical upper bound of quality is than can

be reached by using proposals. To do this, we use EdgeBoxes [Zitnick and Dollár,

2014] and take for each object the proposal which has the highest overlap with the
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Qualification test Quality control mIoU IoU>0.7

75.4 68.0

X 85.7 91.0

X X 87.1 92.5

Table 6.3: Influence of the qualification test and quality control on the accuracy of extreme click

annotations (on 200 images from PASCAL VOC 2007).

ground truth bounding box (among 2000 proposals per image). On PASCAL VOC

2007 we measure 82% mIoU and 91% of them are correct at IoU>0.7. Extreme click-

ing yields 88% mIoU and 94% correct boxes at IoU>0.7. Results also transfer to

object detection performance: Fast R-CNN using VGG16 achieves 62% mAP for the

best proposal while extreme clicks yield 66% mAP. We conclude that weakly super-

vised methods can never select object proposals which are better than boxes obtained

through extreme clicking.

Per-click response-time. We examine the mean response time per click during ex-

treme clicking. Interestingly, the first click on an object takes about 2.5s, while subse-

quent clicks take about 1.5s. This is because the annotator needs to find the object in

the image before they can make the first click. Interestingly, 1s visual search time per

object is again consistent with our findings [Papadopoulos et al., 2014] in Chapter 3

and the findings of Ehinger et al. [2009].

Influence of qualification test and quality control. We conducted three crowd-

sourcing experiments on 200 trainval images of PASCAL VOC 2007 to test the in-

fluence of using a qualification test and quality control. We report the quality of the

bounding boxes derived from extreme clicks in Table 6.3. Using a qualification test

vastly improves annotation quality (from 75.4% to 85.7% mIoU). The quality control

brings a smaller further improvement to 87.1% mIoU.

Cost. We paid the annotators $0.15 to annotate a batch of 10 images which, based on

our timings, is about $7.7 per hour. The total cost for annotating the whole trainval

set of PASCAL VOC 2007 and the training set of PASCAL VOC 2012 was $147 and

$167, respectively.
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6.6 Results on Object Segmentation

This section demonstrates that one can improve segmentation from a bounding box by

using also the boundary points which we obtain from extreme clicking.

6.6.1 Results on PASCAL VOC

Datasets and Evaluation. We perform experiments on VOC 2007 and VOC 2012.

The trainval set of the segmentation task of VOC 2007 consists of 422 images with

ground-truth segmentation masks of 20 classes. For VOC 2012, we evaluate on the

training set, using as reference ground-truth the augmented masks set by Hariharan

et al. [2011] (5623 images).

To evaluate the output object segmentations, for every class we compute the inter-

section over union (IoU) between the predicted and ground-truth segmentation mask,

and report the mean IoU over all object classes (mIoU). Some pixels in VOC 2007 are

labeled as ‘unknown’ and are excluded from evaluation. For these experiments we use

structured edge forests [Dollar and Zitnick, 2013] to predict object boundaries, which

is trained on BSD500 [Arbeláez et al., 2011].

GrabCut from PASCAL VOC GT Boxes. We start with establishing our baseline

by using GrabCut on the original GT Boxes of VOC (for which no boundary points

are available). Since applying Rother et al. [2004] directly leads to rather poor perfor-

mance on VOC 2007 (37.3% mIoU), we first optimize GrabCut on this dataset using

methods discussed in Sec. 6.4. Our optimized model has the following properties: the

object appearance model is initialized from all pixels within the box. The background

appearance model is initialized from a small rectangular ring around the box obtained

by enlarging the window by a factor
p

2 in all directions. A small rectangular core

centered within the box whose area is a quarter of the area of the box is clamped to

be object. All pixels outside the box are clamped to be background. As pairwise po-

tential, instead of using standard RGB differences, we use the summed edge responses

of Dollar and Zitnick [2013] of the corresponding pixels. All modifications together

substantially improve results to 74.4% mIoU on VOC 2007. We then run GrabCut

again on VOC 2012 using the exact same settings optimized for VOC 2007, obtaining

71.0% mIoU.

GrabCut from extreme clicking. Thanks to our extreme clicking annotations, we also
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have object boundary points. Starting from the optimized GrabCut settings established

in the previous paragraph, we make use of these boundary points to (1) initialize a

better object appearance model, and (2) choose better pixels to clamp to object. As

described in Sec. 6.4, we use the extreme clicks to estimate an initial contour of the

object by following predicted object boundaries [Dollar and Zitnick, 2013]. We use the

surface bounded by this contour estimate to initialize the appearance model. We also

skeletonize this surface and clamp the resulting pixels to be object. The resulting model

yields 78.1% mIoU on VOC 2007 and 72.7% on VOC 2012. This is an improvement

of 3.7% (VOC 2007) and 1.7% (VOC 2012) over the strong baseline we built. Fig. 6.4

shows qualitative results comparing GrabCut segmentations starting from GT Boxes

(last row) and those based on our extreme clicking annotations (second-last row).

6.6.2 Results on the GrabCut dataset

We also conducted an experiment on the Grabcut dataset [Rother et al., 2004], consist-

ing of only 50 images. The standard evaluation measure is the error rate in terms of the

percentage of mislabeled pixels. For this experiment, we simulate the extreme click

annotation by using the extreme points of the ground-truth segmentation masks of the

images.

When we perform GrabCut from bounding boxes, we obtain an error rate of 8%.

When using additionally the boundary points from simulated extreme clicking, we

obtain 5.5% error, an improvement of 2.5%. This again demonstrates that boundary

points contain useful information over bounding boxes alone for this task.

For completeness, we note that the state-of-the-art method on this dataset has 3.6%

error [Wu et al., 2014]. This method uses a framework of superpixels and Multiple

Instance Learning to turn a bounding box into a segmentation mask. In this chapter we

build on a much simpler segmentation framework (GrabCut). We believe that incorpo-

rating our extreme clicks into Wu et al. [2014] would bring further improvements.

6.6.3 Training a semantic segmentation model

We now explore training a modern deep learning system for semantic segmentation

from the segmentations derived from extreme clicking. We train DeepLab [Chen et al.,

2015; Papandreou et al., 2015] based on VGG-16 [Simonyan and Zisserman, 2015] on

the VOC 2012 train set (5,623 images) and then we test on its val set (1,449 images).

We measure performance using the standard mIoU measure (Table 6.4). We compare
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Full Segments from Segments from

supervision GT Boxes extreme clicks

mIoU 59.9 55.8 58.4

Table 6.4: Segmentation performance on the val set of PASCAL VOC 2012 dataset using

different types of annotations.

our approach to full supervision by training on the same images but using the ground-

truth, manually drawn object segmentations (one instance per class per image, for fair

comparison). We also compare to training on segmentations generated from GT Boxes.

Full supervision yields 59.9% mIoU, which is our upper bound. As a reference, train-

ing on manual segmentations for all instances in the dataset (i.e., not restrict it to one

instance per class per image) yields 63.8% mIoU. This is 3.8% lower than in Papan-

dreou et al. [2015] since they train from train+val using the extra annotations by Hari-

haran et al. [2011] (10.3k images).

Segments from GT Boxes result in 55.8% mIoU.

Segments from extreme clicks lead to 58.4% mIoU. This means our extreme clicking

segmentations lead to a +2.6% mIoU improvement over those generated from bound-

ing boxes. Moreover, our result is only -1.5% mIoU below the fully supervised case

(given the same total number of training samples).

6.7 Conclusions

We presented an alternative to the common way of drawing bounding boxes, which

involves clicking on imaginary corners of an imaginary box. Our alternative is extreme

clicking: we ask annotators to click on the top, bottom, left- and right-most points of

an object, which are well-defined physical points. We demonstrate that our method

delivers bounding boxes that are as good as traditional drawing, while taking just 7s per

annotation. To achieve this same level of quality, traditional drawing needs 34.5s [Su

et al., 2012]. Hence our method cuts annotation costs by a factor 5⇥ without any

compromise on quality.

In addition, extreme clicking leads to more than just a box: we also obtain accurate

object boundary points. To demonstrate their usefulness we incorporate them into

GrabCut, and show that they leads to better object segmentations than when initializing
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it from the bounding box alone. Finally, we have shown that semantic segmentation

models trained on these segmentations perform close to those trained with manually

drawn segmentations (when given the same total number of samples).
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In this thesis we proposed four efficient human annotation schemes for training

object class detectors: eye-tracking, human verification, center-clicking and extreme-

clicking. Our schemes reduce the human annotation cost of drawing bounding boxes

while still obtaining high quality object detectors.

This chapter is organized as follows: Section 7.1 briefly summarizes the contribu-

tions of the thesis. Section 7.2 draws general conclusions by comparing our schemes.

Section 7.3 gives directions for future research.

7.1 Summary of contributions

The first contribution is designing a scheme to exploit eye-tracking for training de-

tectors. Instead of carefully marking every training image with accurate and tight

bounding boxes, the annotator simply needs to perform a visual search task, i.e. look-

ing for the object in the training images. We tracked the eye movements of annotators

while they performed this task and we proposed a novel technique to derive object

bounding boxes from these eye movement data. To validate our idea, we collected eye

tracking data for the complete trainval set of ten object classes from PASCAL VOC

2012 [Everingham et al., 2012]. We showed that this task can be performed in a frac-
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tion of the time it takes to draw a bounding box (about only one second per image).

The limitations of this scheme are explained in Section 3.6. The main drawback of

eye tracking is the difficulty for crowd-sourcing it, which is essential for building a

very large scale dataset. Being able to accurately track eye movements with conven-

tional web cameras could bypass this difficulty and make crowd-sourcing viable for

eye tracking data [Skovsgaard et al., 2013; Xiao et al., 2015; Xu et al., 2015; Wood

et al., 2015; Krafka et al., 2016; Papoutsaki et al., 2016].

The second contribution is a new efficient annotation scheme that only requires hu-

mans to verify bounding boxes produced by a learning algorithm. Our scheme intro-

duces a human verification step to improve the re-training and re-localization steps

common to most weakly supervised approaches. Extensive experiments on PASCAL

VOC 2007 with both expert and crowd-sourced annotators show that our scheme pro-

duces detectors performing almost as good as those trained in a fully supervised set-

ting, without ever drawing any bounding boxes. As the verification task is very quick,

our scheme reduces the total human annotation time by a factor of 8⇥.

The third contribution is center-click annotation as a way of training object class

detectors. We simply ask annotators to click on the center of an imaginary bound-

ing box which tightly encloses the object instance. We then incorporate these clicks

into existing MIL techniques for WSOL, to jointly localize object bounding boxes

over all training images. We showed that crowd-sourced annotators can perform this

task accurately and fast (1.9s per object). In extensive experiments on PASCAL VOC

and MS COCO we showed that our center-click scheme dramatically improves over

weakly supervised learning of object detectors, at a modest additional annotation cost.

Moreover, we showed that it reduces total annotation time by 9⇥-18⇥ compared to

manually drawing bounding boxes, while still delivering high-quality detectors. Fi-

nally, we showed that our center-click annotation scheme compares favorably against

our human verification scheme (Chapter 4).

The fourth contribution is extreme clicking: an alternative to the common way of

drawing bounding boxes, which involves clicking on imaginary corners of an imagi-

nary box. Instead, we ask annotators to click on the top, bottom, left- and right-most

points of an object, which are well-defined physical points. We demonstrated that

our method delivers bounding boxes that are as well as traditional drawing, while tak-

ing just 7s per box. To achieve this same level of quality, traditional drawing needs



7.2. Guidelines for choosing an annotation scheme 129

34.5s [Su et al., 2012]. Hence our method cuts annotation costs by a factor 5⇥ without

any compromise on quality.

In addition, extreme clicking leads to more than just a box: we also obtain accurate

object boundary points. To demonstrate their usefulness we incorporate them into

GrabCut, and show that they lead to better object segmentations than when initializing

it from the bounding box alone. Finally, we have shown that semantic segmentation

models trained on these segmentations perform close to those trained with manually

drawn segmentations (when given the same total number of samples).

7.2 Guidelines for choosing an annotation scheme

In this section, we compare the human verification (Chapter 4), the center-clicking

(Chapter 5) and the extreme clicking scheme (Chapter 6) to each other (see Figures 7.1

and 7.2), and we draw conclusions that can be used as guidelines for choosing the most

suitable annotation technique in a given situation.

To ensure a fair comparison, we evaluate all these schemes on the same dataset

(i.e., PASCAL VOC 2007). For training we use the trainval set of PASCAL VOC 2007

that contains 5011 images over 20 object classes and for testing we use its test set that

contains 4952 images.

For every scheme we first evaluate the quality of the derived bounding boxes in

the trainval set using the CorLoc (at the standard IoU > 0.5 threshold and the more

stricter IoU > 0.7) and the mIoU performance (Figure 7.1). We then train Fast R-

CNN [Girshick, 2015] object detectors based on AlexNet [Krizhevsky et al., 2012]

or VGG16 [Simonyan and Zisserman, 2015] from the derived boxes in the trainval

set. We evaluate the object detection perfomance in the test set using the mAP met-

ric (Figure 7.2). We also compare our schemes to a WSOL baseline (reference MIL

of Sections 4.4.2, 5.4.1) and to full supervision (traditional manual way of drawing

bounding boxes [Su et al., 2012]). For all our schemes we show results with crowd-

sourced annotations obtained on AMT.

Human verification is a very efficient scheme. At a modest extra annotation cost

of only 8.9 hours, it significantly improves over the reference MIL both in terms of

CorLoc and mAP. One important aspect of this scheme is that it allows us to control

the quality of the generated bounding boxes in the training set. The annotators are

asked to judge whether the overlap of a displayed box with an imaginary perfect box

is greater than a certain threshold t. Therefore, our scheme guarantees that the gen-
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Figure 7.1: Evaluation of the derived bounding boxes in the PASCAL VOC trainval test. We

show here the the CorLoc (at the standard IoU > 0.5 and at the more stricter IoU > 0.7) and

the mIoU performance against the human annotation time in hours at log scale.

erated bounding boxes will have a quality above t. In this thesis, we only considered

IoU > 0.5, but stricter threshold values (e.g., IoU > 0.7) can be also used. This will

lead to more accurate boxes, which can train better detectors at a cost of extra human
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Figure 7.2: Evaluation of the object detection performance in the PASCAL VOC test. We

show here the mAP performance of object detectors trained on weak supervision, on full su-

pervision (traditional bounding box drawing) and on our proposed schemes.

verifications per image. Recently, Google Research generated 1.2 million accurate

bounding boxes (mean IoU around 0.82) for the OpenImages dataset using our human

verification scheme with IoU > 0.7 [Krasin et al., 2017].

Center clicking strikes a better trade-off between accuracy and efficiency than the

human verification scheme. More specifically, the two-click supervision scheme leads

to better CorLoc and mAP than verification. More importantly, it achieves this perfor-

mance with 1.3 less hours of annotation. Given the same annotation time, one-click

supervision outperforms both human verification and extreme clicking. For example,
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given only 3.8 hours of annotation, one-click supervision leads to 45.9% mAP perfor-

mance, 9% mAP better than verification and 3% better than extreme clicking (all using

AlexNet). Therefore, in case of a small fixed annotation budget, one should consider

using this scheme over the other alternatives. One limitation of the center-clicking

scheme is that it does not offer a guarantee on the quality of the output bounding

boxes.

Extreme clicking is an extremely accurate scheme. It is the only one scheme we

propose that matches exactly the accuracy of the traditional bounding box drawing,

both in terms of mIoU box accuracy and in terms of mAP object detection perfor-

mance. More importantly, it is 5⇥ faster. Given the same annotation time, it outper-

forms both human verification and two-click supervision in terms of mAP. Interest-

ingly, training an object detector with only 50% of perfectly annotated samples leads

to slightly better mAP than training with 80% good (IoU > 0.5) and 20% bad examples

(see Figures 7.1 and 7.2 at 7 hours of annotation time).

Improve center-clicking and verification. Center-clicking and verification schemes

are dependent on the MIL method on which they build on. Building on a stronger base

method can significantly improve the accuracy of these schemes. Stronger WSOL

methods currently exist in the literature [Bilen and Vedaldi, 2016; Kantorov et al.,

2016] that lead to better CorLoc performance than our reference MIL. Also, such base

methods can be made stronger by exploiting existing bounding box annotations of

other classes [Guillaumin and Ferrari, 2012; Shi et al., 2012; Hoffman et al., 2014;

Rochan and Wang, 2015; Uijlings et al., 2017]. Recently, the transfer learning method

of Uijlings et al. [2017] has shown remarkable results. In particular, they showed that

the CorLoc performance of our reference MIL can be massively increased (+27%)

by such knowledge transfer. These improvements to our center-click and verification

schemes could lead to a better trade-off than extreme clicking. Note that if we start

from a stronger initial model, the total annotation time of the verification scheme will

be decreased: more boxes will be judged as correct at the very first iteration and they

will not be processed again and again at the following ones. The Google operation to

generate 1.2 million accurate bounding boxes for the OpenImages dataset successfully

applied this trick and showed in practice that our verification scheme enables the cheap

creation of very large scale datasets with high quality boxes, reducing the need for

massive annotation efforts such as ImageNet.

Complete coverage Throughout the whole thesis, we only consider localizing one
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object per class per image. This helps us to keep the annotation schemes as simple

as possible and enables a fair comparison with all WSOL methods. The goal of this

thesis is to efficiently annotate training images that can be used to train high quality

object detectors. That’s why, in their current form, the proposed schemes guarantee

only partial coverage of positive classes. To guarantee complete coverage, an extra

step is required. One should simply ask an extra annotator to verify whether all object

instances of an object class have a generated correct bounding box.

Difficulty of the dataset. Our proposed annotation schemes are dataset agnostic.

Our results on COCO dataset showed that center-clicking and verification can also

be applied successively in a larger and more challenging dataset with much more ob-

ject classes than PASCAL VOC. Also, our human verification and extreme clicking

schemes have been successfully adopted by Google Research to generate efficiently

and successfully 1.2 million accurate bounding boxes for the OpenImages dataset.

Therefore, it is possible that our proposed annotation schemes can be easily adapted

and used to efficiently annotate other datasets that the computer vision community will

be interested in the future.

A proper crowd-sourcing protocol is the key. One important aspect of our annotation

schemes is the crowd-sourcing part. The quality of the annotations heavily depends on

the crowd-sourcing protocol used. In all our experiments (Sections 4.5.2, 5.3 and 6.3)

in Amazon Mechanical Turk (AMT), we carefully designed our crowd-sourcing in or-

der to maximize the efficiency and the accuracy of the annotators: (1) we instructed

them very carefully on how they should perform our tasks, (2) we trained them on the

tasks through interactive and highly effective training stages and (3) we automatically

controlled their quality while they performed our tasks (more details in Sections 4.5.2,

5.3 and 6.3). During the training stage, the annotators had to complete a qualification

test, at the end of which we provided detailed feedback on how well they performed. It

is also important that we made this feedback procedure fully automatic by using a few

existing ground-truth annotations. This is essential as it enables high-frequency feed-

back iterations bypassing the need of having an expert to check the annotators results

manually and resend another training task if needed. The annotators can be trained as

much as needed until they can be considered as well-qualified for the annotation task.

The qualification test has been proven the most effective for collecting high quality

AMT annotations. Note that a badly designed crowd-sourcing protocol will lead to

poor-quality annotations, which in turn will lead to low quality bounding boxes and
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Figure 7.3: A two-stream CNN architecture that takes as input an image, a target class and a

set of eye fixations and infers the bounding box location of the object.

low quality object detectors.

7.3 Future research and perspectives

In this section, we propose interesting directions for future research based on the meth-

ods and the experiments presented in this thesis.

Deep learning with eye tracking. In Section 3.4, we proposed a technique for deriving

bounding boxes on images given eye fixations. This required us to create a set of

handcrafted features (geometrical, temporal and appearance features) computed from

the given set of fixations and feed them into a classifier (SVM) to learn the difference

between the object and the background.

Thanks to the deep learning and the powerful CNNs, one could learn the features

from the eye tracking data for this particular task. In particular, one could create a two-

stream end-to-end trainable CNN model that takes as input an image, a target class

and a set of fixations from annotators instructed to look at the image and search for

an instance of the given class. The output of the network is the spatial location of

the objects. One such model is illustrated in Figure 7.3. Recently, two-stream CNNs

have been successfully used in different tasks such as action recognition [Simonyan

and Zisserman, 2014; Gkioxari and Malik, 2015; Kalogeiton et al., 2017b,a].
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During training, the network could learn more complex, non-linear relations be-

tween the object and the eye fixations than our proposed model (Section 3.4). The

network should be able to learn a feature representation that is able to successfully de-

scribe the complex behavior of humans when they perform a visual search task. More

importantly, it could learn to classify important patterns that occur during this task and

use them to infer the whole spatial extent of the objects. For example, humans tend to

fixate only on various discriminative parts of the objects (e.g. head of animals). Based

on the pose and the size of the head, the network could learn where the whole body of

the animal is located in the image.

Combine different annotation schemes. The annotation schemes we proposed in

Chapters 4, 5 and 6 require the annotator to first search in the image, find the target

object, and finally perform any of the required tasks (verification, center clicking and

extreme clicking). Finding the target object takes an initial visual search time. In

particular, tracking the eye movements of the annotators while they perform one of

these tasks could lead to additional information about the target object (finding an

object typically requires fixating it) at no extra annotation cost.

For example, having access to eye tracking data of the annotators while they per-

form the center-clicking task can give us extra points (fixations) at no extra cost. Dur-

ing a visual search task, some of these fixations are also on the background (see Chap-

ter3) and it is not trivial to distinguish which of them are actually on the target object.

The center click can be used to eliminate background fixations (e.g., far from center).

This combination of schemes can provide us with more spatial points on the target

object at no extra cost that can be again incorporated into MIL for even greater perfor-

mance gains than the center clicking scheme alone.

Another interesting combination of annotations would be center clicking with ver-

ification. As shown in Section 7.2, one-click supervision is extremely fast and strikes

a very good trade-off between accuracy and annotation time. Human verification steps

on top of the one-click model could potentially bring a large improvement in perfor-

mance, as many of the bounding boxes will be judged as correct in the first verification

step. We should expect that this improvement in CorLoc and mAP will be larger than

the one brought by the second center click to the model. Moreover, more compli-

cated and interesting schemes can be introduced by this combination. For instance,

iteratively alternating between center clicking and one verification could be a good

alternative in case of negatively verified boxes.
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Figure 7.4: An active learning scheme that iteratively alternates between updating the MIL

framework and selecting the optimal question to query the annotators.

Active learning. The goal of all our proposed annotation schemes was to obtain high

quality object detectors by cutting the unit cost of producing one bounding box on an

object. This results in savings in annotation time. However, annotating very large-scale

datasets (in the million range) with one of our schemes would still require millions of

cheap annotations, which would still result in lots of annotation hours. Active learning

could be used to further reduce the overall annotation time.

Active learning schemes iteratively train models while requesting humans to anno-

tate only a subset of the data points actively selected by the learner as being the most

informative. Previous active learning work has mainly focused on image classifica-

tion [Joshi et al., 2009; Kapoor et al., 2007; Kovashka et al., 2011; Qi et al., 2008], and

free-form region labeling [Siddiquie and Gupta, 2010; Vijayanarasimhan and Grau-

man, 2008, 2009]. In the task of object detection, a few researchers have proposed

active learning strategies that can produce high quality detectors, but they still require

humans to draw lots of bounding-boxes in order to get there (about one third of the

boxes), leading to limited gains in terms of total annotation time [Vijayanarasimhan

and Grauman, 2014; Yao et al., 2012].

Such techniques could be used in conjunction with our schemes to further reduce
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the annotation cost. Objects that are already correctly localized by the initial weakly

supervised localization algorithm do not need to be ever annotated using any of our

schemes. Also, objects that are still wrongly localized even after using our annotations

should also not be annotated. For example, in our verification scheme, there are some

very difficult objects that require more than 15 verifications before reaching a good

localization. This procedure would require an extra component to automatically decide

which examples should be sent to humans for annotation.

Another extension of the above scheme that also combines all our proposed schemes

is illustrated in Figure 7.4. The input to this system is a set of images to be annotated

with bounding boxes and a desired budget. The output is a set of accurate object

bounding boxes. The goal of this system is to minimize the total human annotation

cost needed to obtain accurate bounding boxes. The system alternates between updat-

ing the appearance model (e.g., one full iteration of WSOL MIL) and asking humans

to provide a type of annotation for an image. In some very easy cases, the output of

MIL is already very accurate and no further annotation is needed. There are also cases

where a very cheap annotation (one center click, one verification) could lead to a very

accurate bounding box or there are cases where that would fail (center clicking does

not lead to a good box or we need to verify 20 different wrong boxes before we find a

good one). In those cases, one should better use extreme clicking.

Video annotation. Drawing bounding boxes in videos is more expensive than in still

images as this requires an annotation in every video frame. Note that annotating a

dog running in a small video of one minute length would require more than one thou-

sand bounding boxes. Large video datasets (such as YTO [Prest et al., 2012], UCF-

101 [Soomro et al., 2012] or YouTube-8M [Abu-El-Haija et al., 2016]) contain millions

or even billions of video frames. At these scales, even our efficient center-clicking or

verification schemes could not solve this annotation problem alone.

Given the temporal continuity of videos, one could propagate the bounding boxes

of a moving object to the next or previous frames by leveraging the object motion in

neighbouring frames. For this reason, several tracking algorithms have been proposed

in the literature [Andriluka et al., 2008; Babenko et al., 2009; Benfold and Reid, 2011;

Berclaz et al., 2011; Grabner et al., 2008; Henschel et al., 2017; Leibe et al., 2007;

Sadeghian et al., 2017; Tang et al., 2017]. These approaches, however, do not perform

well in challenging videos, e.g. with cluttered scenes, with partially or fully occluded

objects, or with significant appearance variations.
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Vondrick et al. [2013] designed an interactive video annotation interface, where

the annotators can play the video, draw bounding boxes around the objects while the

algorithm tracks each object through the video. If the tracking algorithm fails, the

annotator can still intervene and fix the object bounding box. This scheme could lead

to high quality annotations for the whole video without drawing drawing boxes in every

single frame. It still requires, however, the annotator to scan the whole video slowly

and intervene several times.

Therefore, an interesting direction would be designing a system that automatically

selects which video frames to annotate. Such a system could potentially lead to great

saving in annotation time, as videos are redundant. Moreover, these selected frames

could be annotated with one of our proposed schemes bypassing the need for drawing

any box in the video. This system can be seen as an extension of the active learning

scheme described above (Figure 7.4). Taking into account the temporal relation of the

frames, the system should be able to predict whether an annotation in a specific frame

can be correctly propagated to the following ones.

Finally, it would be an interesting direction to collect eye-tracking data on video,

thus extending our work of Chapter 3. Ideally, some day this could lead to the dream

paradigm of “training object detectors while watching TV”.
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Figure A.1: Qualitative examples of extreme clicking annotations on PASCAL VOC 2007

trainval set. For each example, we provide the extreme clicking bounding-box (blue box) and

the exact positions of the extreme clicks (green dots), the PASCAL ground-truth bounding-boxes

(yellow box) and the exact IoU between the two annotations.

Figure A.1 shows qualitative results on various PASCAL VOC 2007 trainval im-

ages comparing extreme clicking with the original ground-truth (GT Boxes). As shown

139
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in Table 6.2, 94% of the extreme clicking boxes have high IoU (IoU>0.7) with the cor-

responding GT Box. Only for 6% of all objects the two annotations are considerably

different (IoU<0.7). In order to fully understand why in these few cases the extreme

clicks and PASCAL annotations diverge, we manually inspected annotations for 50

randomly picked samples with almost no overlap (IoU<0.3) and 100 samples with

low overlap (IoU 2 [0.3,0.7]).

We found out that in cases with almost no overlap, 62% of our annotations are

correct but those objects are not annotated in the PASCAL ground-truth; 18% anno-

tations are on objects of a similar class (e.g. a side-table instead of a dining-table, a

vase with flowers instead of a potted-plant, a pickup truck instead of a car); 14% are

on an entirely wrong class; 6% are spatial annotation errors (e.g. missing a part of the

object).

For low overlap cases there are errors either in extreme click annotations or in

the PASCAL annotations. The majority of these cases are partially occluded objects,

where small parts of an object (e.g. hand, foot, tail, leg, wheel) appear quite far from

the main visible part. Other cases are objects with thin parts like antennas and masts,

yet others are dark images. In 21% of these low overlap cases, extreme clicks pro-

vided better annotations, in 23% the PASCAL ground-truth was better, and in 56% of

the cases we could not decide which annotation was better (these were mostly small

objects).
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Acronyms

AMT - Amazon Mechanical Turk

AP - Average Precision

BoW - Bag of Words

CNN - Convolutional Neural Network

CorLoc - Correct Localization

CRF - Conditional Random Field

DPM - Deformable Part Model

FS - Full supervision

HoG - Histogram of Oriented Gradients

GMM - Gaussian Mixture Model

GT - Ground-truth

ILSVRC - Imagenet Large Scale Visual Recognition Challenge

IoU - Intersection-over-Union

mAP - mean Average Precision

MIL - Multiple Instance Learning

mIoU - mean Intersection-over-Union

SGD - Stochastic Gradient Descent

SIFT - Scale-Invariant Feature Transform

SPM - Spatial Pyramid Matching

SSD - Single Shot Detector

SVM - Support Vector Machine

R-CNN - Region-based Convolutional Neural Network

ReLU - Rectified Linear Unit

ResNet - Residual Network
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RoI - Region of Interest

RPN - Region Proposal Network

WS - Weak Supervision

WSOL - Weakly Supervised Object Localization

YPCMM - Yes/Part/Container/Mixed/Missed



Bibliography

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., and Vi-

jayanarasimhan, S. (2016). Youtube-8m: A large-scale video classification bench-

mark. arXiv preprint arXiv:1609.08675.

Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an object? In CVPR.

Alexe, B., Deselaers, T., and Ferrari, V. (2012). Measuring the objectness of image

windows. IEEE Trans. on PAMI.

Andriluka, M., Pishchulin, L., Gehler, P., and Schiele, B. (2014). 2d human pose

estimation: New benchmark and state of the art analysis. In CVPR.

Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and

people-detection-by-tracking. In CVPR.
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