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situation results/output
Algorithm![?! states topology pairwise marginals convergence optimal complexity references
Plain BP (m)any tree any yes yes yes O(nh?) [4, 1]
Loopy BP (m)any any any yes no no O(eh?i) [4, 1]
truncation trick for BP (m)any tree/any  truncated yes yes/no yes/no  O(nhk)/O(ehik)) [7]
distance transform for BP ordered®ll  tree/any  limited!! no yes/no yes/no O(nh)/O(ehi) [5]
TRW-S any any any yesldl yes nol®! O(eh?i) [6]
on trees any tree any = same as plain BP
on 2-state grids 2 grid submodular = same as Graphcut
Graphcut 2] any submodular no yes yes
2-state augmenting path Dinic 2] any submodular no yes yes O(n?%e)
2-state push-relabel FordFulkerson 2] any submodular no yes yes O(e2U)
2-state Boykov 20] anyl8l  submodular no yes yes O(n?e|C|)I [2]
a/B swap fewls] any semi-metric no yes no O(h?B2P7) 3]
a-expansion fewli] any metric no yes nolll O(hBi) [3]

[2]This is not an exhaustive list. There are other methods such as MCMC, simulated annealing, and linear programming that can also be used in some cases.

[Plgrid-like in > 1D
[
d

¢llinear-combinations and/or min-combinations of L1, L2, box

a way to get something like a marginal is described in [8]

TRW-S also outputs a lower bound on the energy which can be used to determine if the found solution is optimal
there also is an averaging step in this algorithm, which takes some (non-significant) time

glmost advantageous with low-connected grid-graphs

hlin practice for vision problems often very fast

[Ibut the energy of the solution is within a known factor of the global optimum

UISSFN = same states for all nodes. Denotes that the individual nodes must share the same state space.
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Description of the columns

states conditions on the state space of the nodes

topology conditions on the topology of the graph, i.e. which pairs of nodes have a pairwise term
pairwise conditions on the form of the pairwise term

marginals does the algorithm produce marginals?

convergence is the algorithm guaranteed to converge?

optimal is the configuration the algorithm determines guaranteed to be an optimal one?

complexity  the computational worst-case complexity of the algorithm

Notation
(m)any works for any number of states, but it is especially useful for many, typically >100
few works in principle for any number of states, but especially useful with 2 to 32 (segmentation/stereo); never used with > 256 (denoising)
n number of nodes
h number of states of the nodes
e number of edges. For 4-connected grids e = n (typical in many computer vision applications).
i number of iterations
k

is a constant, typically much smaller than h, equal to the number of states covered by the truncated pairwise term (i.e. the area of the pairwise term)
U maximum edge weight
C| cost of the minimal cut

BB the cost of the graph cut algorithm which is used as a subroutine on the graph containing only of the nodes with states a and g
B the cost of the graph cut algorithm which is used as a subroutine (on a graph with as many nodes as the original graph)
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