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Abstract. We address the problem of temporally aligning semantically
similar videos, for example two videos of cars on different tracks. We
present an alignment method that establishes frame-to-frame correspon-
dences such that the two cars are seen from a similar viewpoint (e.g.
facing right), while also being temporally smooth and visually pleasing.
Unlike previous works, we do not assume that the videos show the same
scripted sequence of events. We compare against three alternative meth-
ods, including the popular DTW algorithm, on a new dataset of realistic
videos collected from the internet. We perform a comprehensive evalua-
tion using a novel protocol that includes both quantitative measures and
a user study on visual pleasingness.

1 Introduction

Temporal alignment of videos is often a key step in several popular tasks, such
as video morphing [1], video mosaicking and stitching [2], video compositing [3],
video summarisation [4], action recognition and video retrieval [5] and High
Dynamic Range (HDR) video [6]. Much previous work on temporal alignment
focuses on videos of the same scene recorded from multiple cameras [7-14]. In-
stead, we want to align videos that are only weakly related: we simply require
that their main object belongs to the same semantic class. For example, two
videos of different cars driving along different tracks, and backgrounds.

Our alignment method establishes frame-to-frame correspondences such that
the two cars are seen from a similar viewpoint (e.g. facing right) while also
enforcing temporal smoothness, i.e. we preserve the temporal order of the frames
in the original videos as much as possible (fig.1). Our key intuition is that the
object viewpoint is a good indicator of whether two individual frames showing
different cars are aligned correctly. Temporal smoothness promotes consistency
at a larger temporal scale (i.e. an entire left turn, fig. 1), which is more robust to
noise in individual frames, and also makes the alignments more visually pleasing.

A few previous works [15-17] have tackled aligning semantically similar videos.
However, they typically assume that the videos show a scripted sequence of
events (e.g. drinking motion [17], hand waving [15]), possibly out of phase (i.e.
the events occur at different, varying speeds). Under this assumption, finding an
optimal alignment can be solved using Dynamic Time Warping (DTW) [18] (as
in [17,15]). However, this assumption is unrealistic for most real-world videos,
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Fig. 1. Viewpoint-driven temporal alignment. The goal of this task is to align the
two videos so that both of them show the object from the same viewpoint frame-by-frame
as shown above. This example alignment was produced by our method.

where events may occur in a different order, or some occuring in only one of the
videos.

Here, we present a method that is able to cope with such challenging videos.
Our assumption is that we can decompose videos into contiguous temporal seg-
ments, and put them into correspondence so that each pair of corresponding seg-
ments (rather than the entire videos) show the same sequence of events (fig. 3).
The main contribution of our approach is to solve the temporal segmentation and
the correspondence problems jointly. For this, we use a principled probabilistic
model defined over the space of all possible temporal segmentations and corre-
spondences (sec. 3). A likelihood function promotes putting in correspondence
segments showing similar viewpoints, while other components favour temporal
consistency and smoothness. Inference in our model is a computationally in-
tractable combinatorial problem. Therefore, we present a Markov Chain Monte
Carlo (MCMC) sampling [19] procedure to search its complex parameter space
efficiently (sec. 4).

We test our method on a set of 22 videos of cars racing in rally competitions
collected from the internet, where we have manually annotated the viewpoint
in each frame for evaluation (sec. 6.1). These videos are challenging, showing
fast motion, complex backgrounds and different car models. We automatically
split them into different shots using [20], but they are otherwise untrimmed and
unedited. This is different from videos used in previous work [15-17], which are
trimmed so that they show the exact same sequence of events in their entirety.
We release this dataset at http://calvin.inf.ed.ac.uk/datasets/videoalignment.

In our videos, events are often in a different order and occur a different num-
ber of times. Hence, determining their optimal alignment can be ambiguous,
i.e. we cannot define a unique ground-truth alignment as in [17]. For instance,
if a certain viewpoint appears only once in a video and multiple times in the
other, there are multiple valid ways of aligning them (e.g. fig. 2). To address
this, we perform a comprehensive evaluation that takes into account several
different factors: viewpoint similarity, temporal consistency and visual pleas-
ingness. We evaluate these factors quantitatively on our dataset using a new
carefully designed evaluation protocol, as well as with a substantial user study
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Fig. 2. Example alignment between two videos. The first video shows the same events
as the second (going straight, turning left) but in a different sequence. These videos
cannot be aligned by just stretching and shrinking the time domain of the videos (as
DTW does), but our method can cope with it.

on visual pleasingness (in contrast to previous works that are mostly evaluated
qualitatively on a few videos, e.g. [15,16]). Our results show that our method is
superior to three alternative alignment methods (sec. 6.2), including the popular
DTW [18].

2 Related work

Previous works on temporal alignment can be categorised based on their as-
sumptions about the input videos.

Videos of the same scene from different views. Most previous works,
e.g. [7-12] focus on joint spatio-temporal alignment of videos of the same dy-
namic scene, recorded by two uncalibrated cameras placed at different viewpoints
(typically stationary). [21] also attempts to spatio-temporally align videos of a
single dynamic scene, but they jointly process videos from multiple cameras in-
stead of just two. The work of [22] also assumes a single dynamic scene recorded
by multiple cameras, but focuses on temporal alignment only.

Videos of the same scene at different times. A few works [23, 13, 14] focus
on spatio-temporal alignment of videos of the same scene, but taken at a different
time. To compensate for the lack of temporal overlap between the input videos,
these works assume the cameras follows roughly the same trajectory.

Videos of semantically similar scenes. Our work falls in the category of
temporal alignment of videos that do not show the same scene, but rather se-
mantically similar content (e.g. drinking motion [17], hand waving [15]). Typ-
ically, the videos depict people performing some scripted sequence of actions,
such as drinking or waving [15-17], and the goal is to put in correspondence
frames showing the same body pose. These approaches typically align short
videos showing the exact same sequence of events (possibly at different speed)
and cannot handle challenging videos showing events in a different order like we
do.
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Fig. 3. One possible configuration (sec. 3) of temporal segmentations S, S’ and corre-
spondences | between two videos v,v’. Each video is partitioned into a series of contigu-
ous temporal segments: S = {s1,52,83,584} and S’ = {s], s, s3}. FEach segment has a
correspondence in the other video, denoted byl (arrows). Note that the correspondences
are not necessarily mutual (e.g. s — s5, but s5 — s1).

Frame descriptors for video retrieval and classification. Some works [24—-
26] design good frame descriptors for video retrieval and classification. These
methods do not consider aligning videos like we do (but [25] considers the some-
what related problem of recovering the temporal order of the jumbled frames of a
single video). While the frame descriptor we use focuses on viewpoint similarity
(sec.5), our video alignment formulation is general and can use any other frame
descriptor. In the experiments (sec. 6.3) we compare our viewpoint descriptor
to the descriptor from [25], which achieves state-of-the-art on several retrieval
tasks by encoding temporal context.

3 Temporal alignment model

Our goal is to align two videos where different events may appear in a different
order. Fig. 2 shows a simple example, featuring two types of events: going straight
(s1, 83, s5) and turning left (sq, s7). Ideally, we would like to match s} to s
and sh to either s; or s3 (both would be valid). Note that the problem is not
symmetric: when aligning the second video to the first, we would like to align s;
to sh, so to s, and s3 to s, again. Aligning this example requires shuffling the
temporal order of the videos, and re-using some of its segments.

An additional challenge is that the temporal segmentation of the videos into
different events is also not known in advance. Our method solves the temporal
segmentation and the segment correspondence problems jointly, using a single
probabilistic model over the two tasks, which we now define formally.

Let v and v’ be the two videos we want to align. S = {s1,...,sn5} is the
set of contiguous temporal segments composing v. The temporal segmentation
S’ of v' is defined analogously. The correspondence [; indicates which segment
from v’ is matched to the i-th segment in v (I’ is defined analogously; note
that l; = j =& [j =i, fig. 3). The model parameters © include the temporal
segments of both videos § = {5, 5"} and the set £ containing all correspondences
(fig. 3). Note how both the segmentations S, S” and the correspondence £ have
a variable number of elements, as the number of segments in each video is not
predefined. It is another parameter to be searched over during inference.



Video temporal alignment for object viewpoint 5

OO0 Do
l l - 1 N i
F--3E--E O O O

Fig. 4. Our appearance distance d (4) measures the similarity in appearance between
two segments of potentially different length (sec. 3). We first put the segment frames
in one-to-one correspondence. For this, we project the longest segment onto the shorter
one (top), and put each frame in the longest segment in correspondence with the frame
closest to the projection (bottom). d is the distance in appearance averaged over all
corresponding frames (4).

We define the posterior distribution over the parameters to be

where D are appearance descriptors extracted for all frames in the videos. Since
we want to align the videos so that they show the same viewpoint, we use
state-of-the-art CNN descriptors [27] which we specifically fine-tuned to classify
different viewpoints (sec. 5). The two factors in the posterior compete to allow
our model to find alignments which put similar viewpoints in correspondence,
while also being temporally smooth. The correspondence likelihood p(L|S, D)
promotes putting into correspondence temporal segments (across videos) that
are consistently similar in appearance through time. The temporal segmentation
likelihood p(S|D) promotes having few temporal segments. Having too many
segments can cause the alignment to look jerky due to the frequent segment
switches over time, which is not visually pleasing. Furthermore, it promotes
that each temporal segment is homogeneous in appearance (within a video). A
homogeneous segment is likely to contain a single viewpoint, which makes it a
good unit for matching across videos. We now discuss each factor in more detail.

Correspondence likelihood. We define the correspondence likelihood to be

p(£18, D) = ] [ p(lilS, D) - ] [ pt515. D) 2)

where each p(l; = k|S, D) evaluates the likelihood of I; = k according to the
appearance similarity of s; and s}, (these factors are conditionally independent).
We define the probability of one correspondence I; to be

bt = 315 D) s exp (~anrh e ) 0

where a )y is a scalar weight, ||s;|| is the length of segment s; (i.e., the number of
frames in it), [|v|| is the length of video v, and d(s;, s;) denotes the appearance
distance between the segments s; and s;.

We designed d so that it can evaluate whether the appearance of the segments
is consistently similar through time. Since the segments can have different length
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Fig. 5. (Left) Split move (sec. 4). In this example, temporal segment s3 is split in half,
creating two new segments. (Right) Merge move (sec. 4). In this example, temporal
segments s2 and s3 are merged into a single segment.

(i.e., different speed), we first put their frames in one-to-one correspondence,
denoted by (f — f') (see fig. 4). We can now compute

Si 3/, — M
d(si, s3) = max(|[s;]], [|s’]]) N

where a(f, f’) denotes the appearance distance between frames f and f’ (sec. 5).
Note that DTW [18] is a reasonable alternative segment distance, as it also mea-
sures similarity through time. However, we found that d produces comparable
results to DTW, while being computationally more efficient.

Temporal segmentation likelihood. The temporal segmentation likelihood
p(S|D) promotes having a small number of segments that are homogeneous in
terms of appearance.

P(SID) x exp <aTZ i Az-) exp (—ap(ISI° +IS1%)  6)

where ar, ap are scalar weights, A; is the appearance distance a averaged
over all pairs of frames within s; (sec. 5), and ||.S|| and ||S’|| are the number of
segments in v and v’, respectively. Note that we can compute 4; in constant time
by using summed area tables [28]. The ratio |‘|‘SJ|‘|‘ ensures that the contribution

of each temporal segment is proportional to its length.

The first factor in eq. 5 promotes segments that are homogeneous in terms of
appearance. The second factor acts as a prior, promoting having a small number
of segments. These two factors and the correspondence likelihood compete in
order to strike a balance on the optimal number of segments. On one hand, hav-
ing many short segments results in a high p(S|D), which is trivially maximised
when each frame forms its own segment (which is maximally homogeneous in
appearance). In this limit case, p(£|S, D) reduces to a nearest-neighbour match-
ing between individual frames in the two videos, which results in a low average
appearance distance, but is also sensitive to noisy appearance descriptors. On
the other hand, having a few long segments brings temporal smoothness and
produces a more visually pleasing alignment. However, having corresponding
segments that show the same sequence of viewpoints is more unlikely.
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Fig. 6. (Left) Perturbation move (sec. 4). In this example, we propose moving the
delimiter ¢ between temporal segments sz and s3 by an offset § (with the constraint
that t1 < (t2 +9) < t3). (Right) Correspondence move (sec. 4). In this example, the
correspondence I3 for temporal segment s3 (green arrow) changes from s5 to s.

4 Inference

Maximising the posterior (eq. 1) with respect to © is a hard combinatorial prob-
lem, since we jointly optimise over the number of segments N, N’, the position of
their delimiters S, S’, as well as the set of correspondences £. Furthermore, the
posterior (eq. 1) is a complex distribution which we cannot evaluate analytically.
Thus, we use Markov Chain Monte Carlo (MCMC) sampling [19] to search the
parameter space.

Following the standard formulation, at each iteration we propose a new sam-
ple @' from the current sample @ using a proposal distribution ¢(©’|0). O’ is
then accepted with probability

p(@|D) - q(6]€")

If © is accepted, it becomes the current sample, otherwise we keep @. Our
proposal distribution uses four different kind of moves, each sampling over a
subset of ©. For each move, we change a single model parameter while keeping all
other parameters fixed. Finally, we select the sample with the highest posterior
(eq. 1) as our output.

Perturbation move. We define a perturbation as changing the position of one
of the current delimiters ¢ by an offset § (fig. 6 left). We construct ©' from
the current sample with f(©,t,4), which replaces ¢ with ¢t + §. We choose (¢, 0)
from the space of all possible perturbations (',¢’) conditioned on the current
positions of the delimiters in @. For this, we sample from

p(f(©,t,0)|D)

. 010) = & (@, D) @)

Merge and split move. The merge move proposes merging a pair of sub-
sequent segments into a single one (fig. 5 right). We select which segments to
merge from all possible merges given the delimiters in the current sample, us-
ing a proposal constructed analogously to (7). The complementary split move
proposes splitting a segment in half, yielding two segments (fig. 5 left). Both
merge and split moves change the number of segments in a video. We note that
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Fig. 7. Three example outputs of the softmaz layer from cars in 90, 150 and 180 degree
viewpoints respectively. The labels correspond to background (BG), front 90 degrees (F),
right 0 degrees (R), rear 270 degrees (Re) and left 180 degrees (L).

merge/split moves are quite a standard tool in MCMC methods for solving as-
sociation problems, for example in the domain of tracking multiple objects (e.g.
MCMCDA [29] or [30]).

Correspondence move. This move chooses a segment s; in a video and pro-
poses to change its matching segment in the other video (i.e., it changes [;, fig. 6
right). We choose s; and the new value for [; from all possible alternatives given
the current segmentation S. Again, we use a proposal constructed analogously
to (7).

The way we constructed the proposals above increases the acceptance ratio
of the moves, which improves mixing. For example, choosing (¢, ) in the pertur-
bation move from a uniform distribution would result in a low acceptance ratio
(which significantly improves using gp). Note that, while our proposals need to
compute a large number of posteriors during each move, they can still do it
efficiently since most of the terms are shared between these computations, and
need to be computed only once.

Initialisation. Starting from a @ sample with a reasonably good posterior re-
duces the amount of time wasted in regions of low probability at the beginning
of the sampling process (compared to random initialisation). We begin by indi-
vidually decomposing each video into homogeneous temporal segments, without
considering any correspondences. This is achieved by optimising the temporal
segmentation likelihood p(S|D) using just perturbation, merge and split moves.
Since there is no correspondence likelihood involved, p(S)p(S|D) can be opti-
mised independently for each video efficiently.

Having the initial temporal segmentation S, we then find the optimal cor-
respondence between these segments. This corresponds to optimising the cor-
respondence likelihood p(L|S, D). Since the correspondences are conditionally
independent under our model, we can find the exact optimal set of correspon-
dences with a nearest neighbour approach.
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Fig. 8. A visualisation of the segmentation pipeline We segment the cars in the
videos using video foreground segmentation [34] (sec. 5). Here we show: object proposals
from selective search [35] (top left), the pizel-wise probability map produced by the car
detector [36] (top right), the resulting segmentation (bottom left), and the bounding box
of the segmentation is used to extract the viewpoint descriptor (bottom right).

5 Appearance descriptors

We now discuss the appearance distance a(f, f’) that we use to compute the
distance between frames as part of our likelihood (sec. 3). We designed it to
capture the difference in viewpoint between two frames.

Appearance distance. Modern appearance classifiers based on Convolutional
Neural Networks (CNN) are state-of-the-art for whole image classification [31]
and object detection [27]. However, they are optimised to differentiate between
objects of different classes, and they actually strive for invariance to viewpoint
differences. Therefore they are not ideal for our problem. Instead, we train a
CNN classifier, based on the AlexNet architecture [31], to distinguish among
viewpoints of the car class (which we use in our experiments). We start from a
CNN pre-trained for image classification on the ILSVRC 2012 [31, 32] and fine-
tune it to classify 4 car viewpoints (front, left, right, rear) and the background.
As training data we use the PASCAL VOC 2012 [33] dataset which has car im-
ages with viewpoint annotations. In order to focus on the appearance of the cars
and not on the background, we crop the cars from the image using the provided
bounding-box annotations.

After training, we apply the CNN viewpoint classifier on a video frame and
use the output of the softmax layer as our frame descriptor (i.e. a 5D vector,
summing to 1). The intuition is that if the viewpoint of the input frame matches
one of the training viewpoints from PASCAL VOC closely, the softmax output
vector will be peaked on one of the 4 viewpoints. Instead, if the viewpoint of the
frame lies in-between the training viewpoints, the output probability mass should
be spread between two viewpoints (fig. 7). We then define the distance a(f, f’)
between two frames as the histogram intersection of their frame descriptors.

Object localisation in the videos. To compute the viewpoint descriptor on a
video frame, we first need to localise the car up to a bounding-box. This focuses
the descriptor on the car and matches the kind of data the CNN was trained on.

We start from the video segmentation technique of [34], which can handle
unconstrained video and reliably segments objects even under rapid motion and
against cluttered backgrounds. This method uses a spatio-temporal Markov Ran-
dom Field with unary potentials derived from motion, and a pairwise potential
enforcing spatial and temporal smoothness. Here, we add a unary potential de-
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rived from a car detector trained on PASCAL VOC 2012 dataset [33]. While [34]
is class agnostic and segments arbitrary foreground objects, the car detector in-
jects domain-specific knowledge to anchor the segmentation on cars.

More precisely, for each video frame we extract object proposals using Se-
lective Search [35] and score them with an R-CNN [27] car detector pre-trained
on PASCAL VOC. Next, we score each pixel by the sum of the scores of all the
proposals containing it. This results in a pixel-wise ‘heatmap’ that we use as the
additional unary potential (fig. 8).

We evaluated the method on our dataset using the CorLoc [37] perfor-
mance measure as in [34]. Adding the car detector performs significantly better
than [34], which is class agnostic with (88.5% accuracy versus 73.2%) respec-
tively. Furthermore, the class detector [27] alone achieves just 69.8%, which
shows that using video object segmentation can significantly improve the accu-
racy over using just a detector.

6 Experimental evaluation

In this section we first introduce the data used for evaluation (sec 6.1). Second,
we present the methods we compare against (sec. 6.2). Next, we present our
evaluation protocol (sec. 6.3) and finally discuss our results (sec 6.4).

6.1 Data

We assembled a novel dataset of 22 video sequences depicting cars on racing
sequences collected from YouTube, each 5-30 seconds long. These videos are
challenging, showing different cars in different races, with fast motion, fast mov-
ing camera and cluttered backgrounds.

Our data contains viewpoint annotations for each frame. For this, we use an
annotation protocol that reduces the amount of manual effort as follows. We first
define a set of 16 canonical viewpoints, spaced by 22.5 degrees (starting from
full frontal). We manually annotate all the frames showing one of them. Then,
we automatically annotated the rest of the frames by linearly interpolating the
manual annotations.

We evaluate our model on a pair of videos v, v’ only if at least 50% of frames
in v show a viewpoint that also appears in v’ (up to a difference of 10 degrees).
This leads to 251 pairs of videos out of the 484 possible pairs. We plan to release
this dataset along with the ground truth annotations upon acceptance.

6.2 Alternative methods

We compare our model against three alternatives: a nearest neighbour model,
an MRF model promoting temporal smoothness, and Dynamic Time Warping
(DTW). Note that as input, all methods use the same appearance distance
a(f, f1) used in our model.
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Fig. 9. The MRF model corresponding to eq. 9. Each hidden node (in white) corre-
sponds to a single frame in video v. The observable states (in grey) correspond to the
frames in video v/.

Nearest neighbour. The nearest neighbour model matches each frame in v to
its closest neighbour in v/ according to the appearance distance a (sec. 5). This
simple model has no notion of temporal smoothness and it allows us to verify
what we can achieve using appearance alone.

This approach corresponds to the following model:

L= argmﬁin Z U(ly) (8)
f

where U is a unary cost of matching frame f in v to a frame f/ in v/. Note that
in this case, | denotes the correspondence between individual frames instead of
entire temporal segments. We set U between f, f/ to be equal to their appeance
distance a(f, f7).

MRF model. As a second method, we augment the nearest neighbour model
by adding temporal smoothness between subsequent frames. For this we use a
Markov Random Field (MRF) with pairwise terms that promote that consecutive
frames in v are in correspondence with frames in v’ that are also close in time
(fig. 9). More precisely, we solve the following optimisation problem:

L= argmﬁln;U(lf) + aw ;W(lf,lﬂ_l) (9)

where ap is a weight term, and U is the same unary term used in the nearest
neighbour model. We define the pairwise potential W to be:

W(lg lpp1) = (|lf — Lpga| — 1) (10)

Dynamic Time Warping. Dynamic Time Warping (DTW) [18] is a popu-
lar sequence alignment algorithm. Assuming that the two sequences show the
same event transition with the only variable being the speed of each, DTW can
compute an optimal alignment between them. However, this assumption does
not necessarily hold true for realistic video sequences. As input, we used the
appearance distance a to compute the distance between individual frames.

6.3 Evaluation protocol

Comparative user study. We performed a substantial user study to verify
that our results are indeed visually more appealing to humans compared to the



12 Anestis Papazoglou, Luca Del Pero, Vittorio Ferrari

[ Method [ NN [MRF|DTW/ours|

NN - 112.71] 34.8 | 9.1
MRF ||87.3| - 47.2 |15.6
DTW (|64.2]52.8 - 1234
ours 90.9/84.4|76.6 | -

Table 1. Comparative user study. The table shows the comparative results between
the different methods: nearest neighbour (NN), the MRF model, DTW and our model.
The value in a cell shows the percentage of videos for which the participants preferred the
method of the corresponding row over that of the column. For example, the participants
preferred our method over the nearest neighbour approach for 90.9% of the videos.

alternative methods. We performed a ”blind taste test” in which participants
are presented with the same pair of sequences aligned by two different methods,
and asked which alignment they think is better, i.e., it is consistent in terms
of viewpoint and also looks realistic. In our setup the participant is shown an
original video and how it was aligned to a second video by two different alignment
methods. The original video is displayed in the centre of the screen, the two
alignments are on each side, being played simultaneously (we randomly choose
on which side we put them). The participant then has to decide which one they
think is better. Note that we never reveal to the user which method was used to
produce the alignments we display.

We use this protocol to compare all of the alignment methods in pairs (e.g.
our full method vs DTW, DTW vs MRF, etc.). We ensure that each pair of
methods is shown to at least 3 different participants for each pair of videos and
we aggregate the results (table 1).

Quantitative criteria. We identify several properties that correspond to what
humans perceive as attractive alignments. First, frames in correspondence should
be displaying the same viewpoint. Second, the viewpoint transitions should
be temporally consistent. Third, long sequences of correct correspondences are
preferable. Based on this observation, we propose two measures to evaluate an
alignment quantitatively:

Percentage of correct correspondences: This measures the percentage of frames
that are in correct correspondence, i.e. difference in viewpoint is 22.5 degrees
or less (which is equal to the spacing we use to manually annotate keypoints,
sec. 6.1), and the difference in the viewpoint derivative is 5 degrees/frame or less.
Intuitively, the viewpoint difference ensures that aligned frames show the same
viewpoint, while the derivative difference ensures that the viewpoint transition
is smooth.

Longest correct sequence: This measures the length of the longest sequence
of correct correspondences in each video, normalised by the length of the video.
Intuitively, alignments that are correct for large periods of time are visually
preferable to alignments with alternating correct and erroneous correspondences.

Quantitative criteria vs user study. We analyse how well these two eval-
uation criteria capture what humans perceive as a good temporal alignment,
by verifying how accurately they can predict the results of the user study. We
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Fig. 10. Qualitative results. Each pair of rows (a-d) shows an original video (top)
and a second video aligned to it by our method (bottom).

do this as follows. Given two methods, we predict that the user will choose the
alignment found by the method that scores higher according to the evaluation
criteria. We then report the prediction accuracy of each criterion, i.e. the num-
ber of times the prediction made using that criterion is correct, averaged over
all possible pairs of methods and videos (table. 3).

6.4 Results and discussion

Comparative user study. Table 1 shows the results of the user study. The
value in a cell shows the percentage of videos for which the participants preferred
the method of the corresponding row over that of the column. Our method
substantially outperforms all three alternative methods (last row).

The nearest neighbour model produces very jittery alignments, as it does
not enforce any temporal smoothness. As a consequence, the participants do not
find the output visually pleasing. Thanks to pairwise temporal smoothness, the
MRF model partly alleviates this problem. However, the smoothness is promoted
only at a local level (between consecutive frames). Hence, the MRF is unable
to capture smooth transitions of viewpoints on a larger time scale. Instead, our
model enforces smoothness at the level of temporal segments, leading to large,
piece-wise smooth alignments.
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Correct correspondence % Longest correct sequence
our descriptor |descriptor [25]| our descriptor |descriptor [25]
NN 29.8 16.8 9.4 8.7
MRF 46.0 18.9 27.5 12.7
DTW 40.8 15.8 26.4 11.7
our alignment model 47.8 20.0 30.3 13.6

Table 2. Quantitative results. Comparison of the different video alignment meth-
ods: nearest neighbour (NN), MRF model, DTW and our model. The first two columns
show the percentage of correct correspondences when we use our appearance descrip-
tor (sec. 5) and when we use the descriptor from [25]. The next two columns show
performance on longest correct sequence (sec. 6.3).

Human agreement
Correct correspondence % 70.7
Longest correct sequence .

Table 3. Evaluation of criteria. Each value corresponds to the accuracy of a quan-
titative criterion when trying to predict the results of our user study (sec. 6.3).

Interestingly, the participants clearly prefer DTW over the nearest neighbour
model, but results are comparable with respect to the MRF model. As mentioned
before, DTW makes the strong assumption that both videos show the exact same
sequence of events, possibly occurring at varying speeds. When this assumption
holds, DTW can produce an optimal temporal alignment, and the participants
prefer it over MRF. However, in the scenario where this assumption does not
hold, the participants consistently prefer MRF. They however clearly prefer our
method over both DTW and MRF, as our model can handle both scenarios
thanks to the temporal segmentation.

Quantitative criteria. Table 2 shows the performance of each method accord-
ing to our two quantitative criteria (sec. 6.3) using our descriptor (sec. 5) and
the state-of-the-art descriptor [25]. Our alignment method outperforms all of
the alternatives for both criteria and both descriptors. Moreover, our descrip-
tor outperforms [25] on both criteria, probably because object viewpoint is a
powerful cue for our task. In contrast to the user study results, DTW performs
significantly worse than the MRF model with respect to percentage of correct
correspondence. This indicates that humans tend to prefer smoother alignments,
even if the aligned frames exhibit a larger difference in viewpoint. While the
quantitative performance difference between the MRF model and ours is rather
mild, users prefer our method over the MRF on 84% of the videos, showing that
our alignments are much more visually pleasing. Fig. 10 shows some qualitative
results produced by our method.

Quantitative criteria vs user study. Table 3 shows an analysis of how well
our evaluation criteria can predict what humans perceive as visually pleasing
alignments. As can be seen from the results, both criteria show a strong correla-
tion to what the participants prefer, in particular the longest correct sequence.
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