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Abstract

Manually annotating object bounding boxes is central
to building computer vision datasets, and it is very time
consuming (annotating ILSVRC [53] took 35s for one high-
quality box [62]). It involves clicking on imaginary corners
of a tight box around the object. This is difficult as these
corners are often outside the actual object and several ad-
justments are required to obtain a tight box. We propose
extreme clicking instead: we ask the annotator to click on
four physical points on the object: the top, bottom, left- and
right-most points. This task is more natural and these points
are easy to find. We crowd-source extreme point annotations
for PASCAL VOC 2007 and 2012 and show that (1) anno-
tation time is only 7s per box, 5× faster than the traditional
way of drawing boxes [62]; (2) the quality of the boxes is
as good as the original ground-truth drawn the traditional
way; (3) detectors trained on our annotations are as accu-
rate as those trained on the original ground-truth. More-
over, our extreme clicking strategy not only yields box coor-
dinates, but also four accurate boundary points. We show
(4) how to incorporate them into GrabCut to obtain more
accurate segmentations than those delivered when initial-
izing it from bounding boxes; (5) semantic segmentations
models trained on these segmentations outperform those
trained on segmentations derived from bounding boxes.

1. Introduction
Drawing the bounding boxes traditionally used for object

detection is very expensive. The PASCAL VOC bounding
boxes were obtained by organizing an “annotation party”
where expert annotators were gathered in one place to cre-
ate high quality annotations [21]. But crowdsourcing is es-
sential for creating larger datasets: Su et al. [62] developed
an efficient protocol to annotate high-quality boxes using
Amazon Mechanical Turk (AMT). They report 39% effi-
ciency gains over consensus-based approaches (which col-
lect multiple annotations to ensure quality) [13, 60]. How-
ever, even this efficient protocol requires 35s to annotate
one box (more details in Sec. 2).
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Figure 1. Annotating an instance of motorbike: (a) The conven-
tional way of drawing a bounding box. (b) Our proposed extreme
clicking scheme.

Why does it take so long to draw a bounding box? Fig 1a
shows the typical process [12, 21, 32, 54, 61, 62]. First
the annotator clicks on a corner of an imaginary rectangle
tightly enclosing the object (say the bottom-right corner).
This is challenging, as these corners are typically not on
the object. Hence the annotator needs to find the relevant
extreme points of the object (the bottom point and the right-
most point) and adjust the x- and y-coordinates of the corner
to match them. After this, the annotator clicks and drags the
mouse to the diagonally opposite corner. This involves the
same process of x- and y-adjustment, but now based on a
visible rectangle. After the rectangle is adjusted, the anno-
tator clicks again. He/she can make further adjustments by
clicking on the sides of the rectangle and dragging them un-
til the box is tight on the object. Finally, the annotator clicks
a “submit” button.

From a cognitive perspective, the above process is sub-
optimal. The three steps (clicking on the first corner, drag-
ging to the second corner, adjusting the sides) effectively
constitute three distinct tasks. Each task requires attention
to different parts of the object and using the mouse differ-
ently. In effect, the annotator is constantly task-switching, a
process that is cognitively demanding and is correlated with
increased response times and errors rates [45, 52]. Further-
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more, the process involves a substantial amount of mental
imagery: the rectangle to be drawn is imaginary, and so are
the corner points. Mental imagery also has a cognitive cost,
e.g. in mental rotation experiments, response time is pro-
portional to rotation angle [35, 57].

In this paper we propose an annotation scheme which
avoids task switching and mental imagery, resulting in
greatly improved efficiency. We call our scheme extreme
clicking: we ask the annotator to click on four extreme
points of the object, i.e. points belonging to the top, bot-
tom, left-most, and right-most parts of the object (Fig 1b).
This has several advantages: (1) Extreme points are not
imaginary, but are well-defined physical points on the ob-
ject, which makes them easy to locate. (2) No rectangle is
involved, neither real nor imaginary. This further reduces
mental imagery, and avoids the need for detailed instruc-
tions defining the notion of a bounding box. (3) Only a
single task is performed by the annotator thus avoiding task
switching. (4) No separate box adjustment step is required.
(5) No “submit” button is necessary; annotation terminates
after four clicks.

Additionally, extreme clicking provides more informa-
tion than just box coordinates: we get four points on the
actual object boundary. We demonstrate how to incorporate
them into GrabCut [51], to deliver more accurate segmenta-
tions than when initializing it from bounding boxes [51]. In
particular, GrabCut relies heavily on the initialization of the
object appearance model (e.g. [39, 51, 68]) and on which
pixels are clamped to be object/backgound. When using just
a bounding box, the object appearance model is initialized
from all pixels within the box (e.g. [23, 39, 51]). Moreover,
it typically helps to clamp a smaller central region to be ob-
ject [23]. Instead, we first expand our four object boundary
points to an estimate of the whole contour of the object. We
use this estimate to initialize the GrabCut object appearance
model. Furthermore, we skeletonize the estimate and clamp
the resulting pixels to be object.

We perform extensive experiments on PASCAL VOC
2007 and 2012 using crowd-sourced annotations which
demonstrate: (1) extreme clicking only takes 7s seconds
per box, 5× faster than the traditional way of drawing
boxes [62]; (2) extreme clicking leads to high-quality boxes
on a par with the original ground-truth boxes drawn the tra-
ditional way; (3) detectors trained on boxes generated us-
ing extreme clicking perform as well as those trained on
the original ground-truth; (4) incorporating extreme points
into GrabCut [51] improve object segmentations by 2%-4%
mIoU over initializing it from bounding boxes; (5) seman-
tic segmentations models trained on segmentations derived
from extreme clicking outperform those trained on segmen-
tations generated from bounding boxes by 2.6% mIoU.

2. Related work
Time to draw a bounding box. The time required to
draw a bounding box varies depending on several factors,
including the quality of the boxes and the crowdsourcing
protocol used. In this paper, as an authoritative reference
we use the protocol of [62] which was used to annotate
ILSVRC [53]. It was designed to produce high-quality
bounding boxes with little human annotation time on Ama-
zon Mechanical Turk. They report the following median
times for annotating an object of a given class in an im-
age [62]: 25.5s for drawing one box, 9.0s for verifying its
quality, and 7.8s for checking whether there are other ob-
jects of the same class yet to be annotated. Since we only
consider annotating one object per class per image, we use
25.5s+9.0s = 34.5s as the reference time. This is a conser-
vative estimate: when taking into account that some boxes
are rejected and need to be re-drawn, the median time in-
creases to 55s. If we use average times instead of medians,
the cost raises further to 117s.

Note how both PASCAL VOC and ILSVRC have im-
ages of comparable difficulty and come with ground-truth
box annotations of similar high quality [53], justifying our
choice of 35s reference time. Papers reporting faster tim-
ings [32, 54] aim for lower-quality boxes (e.g. the official
annotator instructions of [32] show an example box which
is not tight around the object). We compare to [54] in Sec. 5.
Reducing annotation time for training object detectors.
Weakly-supervised object localization techniques (WSOL)
can be used to train object detectors from image-level la-
bels only (without bounding boxes) [5, 11, 14, 55, 59]. This
setting is very cheap in terms of annotation time, but it pro-
duces lower quality object detectors, typically performing
at only about half the level of accuracy achieved by training
from bounding boxes [5, 11, 14, 55, 67].

Training object class detectors from videos could bypass
the need for manual bounding boxes, as the motion of the
objects facilitates their automatic localization [49, 40, 41].
However, because of the domain adaptation problem, these
detectors are still quite weak compared to ones trained on
manually annotated still images [34]. Alternative types of
supervision information such as eye-tracking data [44, 46],
text from news articles or web pages [17, 28], or even movie
scripts [7] have also been explored. Papadopoulos et al. [47]
propose a scheme for training object class detectors which
only requires annotators to verify bounding boxes generated
automatically by the learning algorithm. We compare our
extreme clicking scheme to state-of-the-art WSOL [5], and
to [47] in Sec. 5.
(Interactive) object segmentation. Object segmenta-
tions are significantly more expensive to obtain than bound-
ing boxes. The creators of the SBD dataset [29] merged
five annotations per instance, resulting in a total time of
315s per instance. For COCO [43], 79s per instance were



Submit 

Y Qualification 

Main task 

Y 
Return 

N N 

Y User  
qualified ? 

N 
Feedback 

Pass? 

Pass? 

Annotator training Annotating images Instructions 

Figure 2. The workflow of our crowd-sourcing protocol for collecting extreme click annotations on images. The annotators read a
set of instructions and then go through an interactive training stage that consists of a qualification test at the end of which they receive a
detailed feedback on how well they performed. Annotators who successfully pass the test can proceed to the annotation stage. In case of
failure, they are allowed to repeat the test as many times as they want until they succeed.

required for drawing object polygons, excluding verify-
ing correctness and possibly redrawing. To reduce anno-
tation time many interactive segmentation techniques have
been proposed, which require the user to input either a
bounding box around the object [42, 51, 71], or scribbles
[3, 16, 24, 26, 27, 42, 50, 64, 65, 72], or clicks [31, 69].
Most of this work is based on the seminal GrabCut algo-
rithm [51], which iteratively alternates between estimat-
ing appearance models (typically Gaussian Mixture Mod-
els [6]) and refining the segmentation using graph cuts [9].
The user input is typically used to initialize the appearance
model and to clamp some pixels to background. In this pa-
per, we incorporate extreme clicks into GrabCut [51], im-
proving the appearance model initialization and automati-
cally selecting good seed pixels to clamp to object.

3. Collecting extreme clicks
In this section, we describe our crowd-sourcing frame-

work for collecting extreme click annotations (Fig. 2). An-
notators read a simple set of instructions (sec. 3.1) and then
go through an interactive training stage (sec. 3.2). Those
who successfully pass the training stage can proceed to the
annotation stage (sec. 3.3).

3.1. Instructions

The annotators are given an image and the name of a
target object class. They are instructed to click on four ex-
treme points (top, bottom, left-most, right-most) on the visi-
ble part of any object of this class. They can click the points
in any order. In order to let annotators know approximately
how long the task will take, we suggest a total time of 10s
for all four clicks. This is an upper bound on the expected
annotation time that we estimated from a small pilot study.

Note that our instructions are extremely simple, much
simpler than those necessary to explain how to draw a
bounding box in the traditional way (e.g. [54, 62]). They are
also simpler than instructions required for verifying whether
a displayed bounding box is correct [47, 54, 62]. That re-
quires the annotator to imagine a perfect box on the object,

and to mentally compare it to the displayed one.

3.2. Annotator training

After reading the instructions, the annotators go through
the training stage. They have to complete a qualification
test, at the end of which they receive detailed feedback on
how well they performed. Annotators who successfully
pass this test can proceed to the annotation stage. In case
of failure, annotators can repeat the test until they succeed.
Qualification test. A qualification test is a good mecha-
nism for enhancing the quality of crowd-sourcing data and
for filtering out bad annotators and spammers [1, 19, 33,
37]. Some annotators do not pay attention to the instruc-
tions or do not even read them. Qualification tests have been
successfully used to collect image labels, object bounding
boxes, and segmentations for some of the most popular
datasets (e.g., COCO [43] and Imagenet [53, 62]).

The qualification test is designed to mimic our main task
of clicking on the extreme points of objects. We show the
annotator a sequence of 5 different images with the same
object class and ask them to carry out the extreme clicking
task.
Feedback. The qualification test uses a small pool of im-
ages with ground-truth segmentation masks for the objects,
which we employ to automatically validate the annotator’s
clicks and to provide feedback (Fig. 2, middle part). We
take a small set of qualification images from a different
dataset than the one that we annotate.

In the following, we explain the validation procedure for
the top click (the other three cases are analogous). We ask
the annotator to click on a top point on the object, but this
point is not necessarily uniquely defined. Depending on the
object shape, there may be multiple points that are equiva-
lent, up to some tolerance margin (e.g. the top of the dog’s
head in fig. 3, top row). Clearly, clicking on any of these
points is correct. The area in which we accept the anno-
tator’s click is derived from the segmentation mask. First,
we find the pixels with the highest y-coordinate in it (there
might be multiple such pixels). Then, we select all pixels in
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Figure 3. Qualification test. (Left) Qualification test examples of
the dog and cat class. (Middle) The figure-ground segmentation
masks we use to evaluate annotators’ extreme clicks during the
training stage. The pixels of the four extreme areas of the mask are
marked with colors. (Right) The accepted areas for each extreme
click and the click positions as we display them to the annotators
as feedback.

the mask with y-coordinates within 10 pixels of any of these
top pixels (red area in Fig. 3, middle column). Finally, we
also include in the accepted area all image pixels within 10
pixels of any of the selected pixels in the segmentation mask
(Fig. 3, right column). Thus the accepted area includes all
top pixels in the mask, plus a tolerance region around them,
both inside and outside the mask.

After the annotators finish the qualification test, they re-
ceive a feedback page with all the examples they annotated.
For each image, we display the annotator’s four clicks, and
the accepted areas for each click (Fig. 3 right column).

Success or failure. The annotators pass the qualification
test if all their clicks on all 5 qualification images are inside
the accepted areas. Those that pass the test are recorded as
qualified annotators and can proceed to the main annotation
stage. A qualified annotator never has to retake the qual-
ification test. In case of failure, annotators are allowed to
repeat the test as many times as they want. The combina-
tion of automatically providing rich feedback and allowing
annotators to repeat the test makes the training stage interac-
tive and highly effective. Annotators that have reached the
desired level of quality can be expected to keep it through-
out the annotation [30].

3.3. Annotating images

In the annotation stage, annotators are asked to annotate
small batches of 10 consecutive images. To increase anno-
tation efficiency, the target class for all the images within
a batch is the same. This means annotators do not have to
re-read the class name for every image and can use their
prior knowledge of the class to find it rapidly in the im-
age [63]. More generally, it avoids task-switching which is
well-known to increase response time and decrease accu-
racy [52, 45].

Quality control. Quality control is a common process
when crowd-sourcing image annotations [4, 36, 43, 53, 56,
60, 62, 66, 70]. We control the quality of the annotation by
hiding one evaluation image for which we have a ground-
truth segmentation inside a 10-image batch, and monitor the
annotator’s accuracy on it (golden question). Annotators
that fail to click inside the accepted areas on this evaluation
image are not able to submit the task. We do not do any
post-processing rejection of the submitting data.

4. Object segmentation from extreme clicks
Extreme clicking results not only in high-quality bound-

ing box annotations, but also in four accurate object bound-
ary points. In this section we explain how we use these
boundary points to improve the creation of segmentation
masks from bounding boxes.

We cast the problem of segmenting an object instance
in image I as a pixel labeling problem. Each pixel p ∈ I
should be labeled as either object (lp = 1) or background
(lp = 0). A labeling L of all pixels represents the segmented
object. Similar to [51], we employ a binary pairwise energy
function E defined over the pixels and their labels.

E(L) =
∑
p

U(lp) +
∑
p,q

V (lp, lq) (1)

U is a unary potential that evaluates how likely a pixel p is
to take label lp according to the object and background ap-
pearance models, while the pairwise potential V encourages
smoothness by penalizing neighboring pixels taking differ-
ent labels.
Initial object surface estimate from extreme clicks. For
GrabCut to work well, it is important to have a good initial
estimate of the object surface to initialize the appearance
model. Additionally, it helps to clamp certain pixels to ob-
ject [39]. We show how the four collected object boundary
points can be exploited to do both.

In particular, for each pair of consecutive extreme clicks
(e.g. leftmost-to-top, or top-to-rightmost) we find the path
connecting them which is most likely to belong to the ob-
ject boundary. For this purpose we first apply a strong edge
detector [15] to obtain a boundary probability ep ∈ [0, 1]
for every pixel p of the image (second row of Fig. 4). We
then define the best boundary path between two consec-
utive extreme clicks as the shortest path whose minimum
edge-response is the highest (third row of Fig. 4, magenta).
We found this objective function to work better than others,
such as minimizing

∑
p(1−ep) for pixels p on the path. The

resulting object boundary paths yield an initial estimate of
the object outlines.

We use the surface within the boundary estimates (shown
in green in the third row of Fig. 4) to initialize the object ap-
pearance model used for U in Eq. (1). Furthermore, from



Figure 4. Visualization of input cues and output of GrabCut. First row shows input with annotator’s extreme clicks. Second row shows
output of edge detector [15]. Third row shows our inputs for GrabCut: the pixels used to create background appearance model (red), the
pixels used to create the object appearance model (bright green), the initial boundary estimate (magenta), and the skeleton pixels which we
clamp to have the object label (dark green). Fourth row shows the output of GrabCut when using our new inputs, while the last row shows
the output when using only a bounding box.

this surface we obtain a skeleton using standard morphol-
ogy (shown in dark green in third row of Fig. 4). This skele-
ton is very likely to be object, so we clamp its pixel-labels
to be object (ls = 1 for all pixels s on the skeleton).

Appearance model. As in classic GrabCut [51], the ap-
pearance model consists of two GMMs, one for the object
(used when lp = 1) and one for the background (used when
lp = 0). Each GMM has five components, where each is a
full-covariance Gaussian over the RGB color space.

Traditional interactive segmentation techniques [42, 51,
71] start from a manually drawn bounding box and esti-
mate the initial appearance models from all pixels inside
the box (object model) and all pixels outside it (background
model). However, this may be suboptimal: since we are
trying to segment the object within the box, intuitively only
the immediate background is relevant, not the whole image.
Indeed, we improved results by using a small ring around
the bounding box for initializing the background model (see
third row Fig. 4 in red). Furthermore, not all pixels within
the box belong to the object. But given only a bounding box
as input, the best is to still use the whole box to initialize
the object model. Therefore, in our baseline GrabCut im-
plementation, the background model is initialized from the
immediate background and the object model is initialized
from all pixels within the box.

However, because we have extreme clicks we can do bet-
ter. We use them to obtain an initial object surface estimate
(described above) from which we initialize the object ap-
pearance model. Fig. 5 illustrates how this improves the
unary potentials U resulting from the appearance models.

Clamping pixels. GrabCut sometimes decides to label all
pixels either as object or background. To prevent this, one
can clamp some pixels to a certain label. For the back-
ground, all pixels outside the bounding box are typically
clamped to background. For the object, one possible ap-
proach is to clamp a small area in the center of the box [23].
However, there is no guarantee that the center of the box is
on the object, as many objects are not convex. Moreover,
the size of the area to be clamped is not easy to set.

In this paper, we estimate the pixels to be clamped by
skeletonizing the object surface estimate derived from our
extreme clicks (described above). In Sec. 6 we show how
our proposed object appearance model initialization and
clamping scheme affect the final segmentation quality.

Pairwise potential V . The summation over (p, q) in (1)
is defined on an eight-connected pixel grid. Usually, this
penalty depends on the RGB difference between pixels, be-
ing smaller in regions of high contrast [8, 6, 27, 42, 51, 64].
In this paper, we instead use the sum of the edge responses
of the two pixels given by the edge detector [15]. In Sec. 6
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Figure 5. Posterior probability of pixels belonging to object. For
both rows the background appearance model is created by using an
area outside the initial box (see Fig. 4). In the first row the object
model is created using the area inside the initial box. In the second
row the object model is created from the object surface estimated
using extreme clicks (Fig. 4, third row in light-green). Predictions
from the appearance model using extreme clicks are visibly better.

we evaluate both pairwise potentials and show how they af-
fect the final segmentation.

Optimization. After the initial estimation of appearance
models, we follow [51] and alternate between finding the
optimal segmentation L given the appearance models, and
updating the appearance models given the segmentation.
The first step is solved globally optimally by minimizing (1)
using graph-cuts [9], as our pairwise potentials are submod-
ular. The second step simply fits GMMs to labeled pixels.

5. Extreme Clicking Results

We implement our annotation scheme on Amazon Me-
chanical Turk (AMT) and collect extreme click annotations
for both the trainval set of PASCAL VOC 2007 [20] (5011
images) and the training set of PASCAL VOC 2012 [22]
(5717 images), which contain 20 object categories. For ev-
ery image we annotate a single instance per class (if present
in the image), which enables direct comparison to other
methods described below. We compare methods both in
terms of efficiency and quality.

Compared methods. Our main comparisons are to the
existing ground-truth bounding boxes of PASCAL VOC. As
discussed in Sec. 2, we use 34.5s as the reference time nec-
essary to produce one such high quality bounding box by
drawing it the traditional way [62].

At the other extreme, it is possible to obtain lower quality
bounding boxes automatically at zero extra costs by using
weakly supervised methods, which only input image-level
labels. We compare to the recent method of [5].

We also compare to two methods which strike a trade-off
between accuracy and efficiency [54, 47]. In [54], manual
box drawing is part of a complex computer-assisted annota-
tion system. Papadopoulos et al. [47] propose an annotation
scheme that only requires annotators to verify boxes auto-
matically generated by a learning algorithm. Importantly,
both [47, 54] report both annotation time and quality, en-
abling proper comparisons.

Evaluation measures. For evaluating efficiency we re-
port time measurements, both in terms of annotating the
whole dataset and per instance.

We evaluate the quality of bounding boxes with respect
to the PASCAL VOC ground-truth. We do this with respect
to the ground-truth bounding boxes (GT Boxes), but also
with respect to bounding boxes which we fit to the ground-
truth segmentations (GT SegBoxes). We quantify quality
by intersection-over-union (IoU) [21], where we measure
the percentage of bounding boxes we annotated per object
class with IoU greater than 0.5 and 0.7, and then take the
mean over all classes (IoU>0.5, IoU>0.7). In addition, we
calculate the average IoU for all instances of a class and
take the mean over all classes (mIoU).

As an additional measure of accuracy we measure detec-
tor performance using Fast-RCNN [25], trained either on
our extreme click boxes or on the PASCAL GT Boxes.

5.1. Results on quality and efficiency

PASCAL ground-truth boxes vs. extreme clicks. Ta-
ble 1 reports the results. Having two sets of ground-
truth boxes enables us to measure the agreement among
the expert annotators that created PASCAL. Comparing GT
Boxes and GT SegBoxes reveals this agreement to be at
88% mIoU on VOC 2007. Moreover, 93% of all GT Boxes
have IoU > 0.7 with their corresponding GT SegBox. This
shows that the ground-truth annotations are highly consis-
tent, and these metrics represent the quality of the ground-
truth itself. Similar findings apply to VOC 2012.

Interestingly, the boxes derived from our extreme clicks
achieve equally high metrics, when compared to the PAS-
CAL ground-truth annotations. Therefore our extreme click
annotations yield boxes with a quality within the agreement
among expert-annotators using the traditional way of draw-
ing. To get a better feeling for such quality, if we perturb
each of the four coordinates of the GT Boxes by 4 pixels,
the resulting boxes also have 88% mIoU with the unper-
turbed annotations.

To further demonstrate the quality of extreme clicking,
we train Fast-RCNN [25] using either PASCAL GT Boxes
or extreme click boxes. We train on PASCAL VOC 2007s
trainval set and test on its test set, then we train on VOC
2012s train and test on its val set. We experiment using
AlexNet [38] and VGG16 [58]. Performance when train-
ing from GT Boxes or from our boxes is identical on both
datasets and using both base networks.
Annotation efficieny. In terms of annotation efficiency,
extreme clicks are 5× cheaper: 7.0s instead of 34.5s. This
demonstrates that extreme clicking costs only a fraction of
the annotation time of the widely used box-drawing proto-
col [12, 21, 54, 61, 62], without any compromise on quality.
Human verification [47] vs. extreme clicks. Table 2
compares extreme clicks to human verification [47] on VOC



Annotation quality w.r.t. GT SegBoxes Detector performance (mAP) Annotation time
Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

PASCAL Extreme clicks 88 92 98 56 66 14.3 7.0
VOC 2007 PASCAL GT Boxes 88 93 98 56 66 70.0 34.5
PASCAL Extreme clicks 87 91 95 52 62 16.8 7.2

VOC 2012 PASCAL GT Boxes 87 90 96 52 62 79.8 34.5
Table 1. Comparison of extreme clicking and PASCAL VOC ground-truth.

Annotation quality w.r.t. GT Boxes Detector performance (mAP) Annotation time
Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

Extreme clicks 88 94 97 56 66 14.3 7.0
PASCAL VOC Human verification [47] – – 81 50 58 9.2 4.5

2007 WSOL: Bilen and Vedaldi [5] – – 54 35 35 0 0
ILSVRC (subset) box drawing in [54] – 71 – – – – 12.3

Table 2. Comparison of extreme clicking and alternative fast annotation approaches.

2007. While verification is 1.6× faster, our bounding boxes
are much more accurate (97% correct at IoU>0.5, com-
pared to 81% for [47]). Additionally, detector performance
at test time is 6%-8% mAP higher for extreme clicking.
Weak supervision vs. extreme clicks. Weakly super-
vised methods are extremely cheap in human supervision
time. However, the recent work [5] reports 35% mAP us-
ing VGG16, which is only about half the result brought by
extreme clicking (66% mAP, Table 2).
Box drawing [54] vs. extreme clicks. Finally, we com-
pare to [54] in Table 2. This is an approximate comparison
as measurements of their box-drawing component are done
on an unspecified subset of ILSVRC 2014. However, as
ILSVRC and PASCAL VOC are comparable in both quality
of annotations and difficulty of the dataset [53], this com-
parison is representative. In [54] they report 12.3s for draw-
ing a bounding box, where 71% of the drawn boxes have
an IoU>0.7 with the ground-truth box. This suggests that
bounding boxes can be drawn faster than reported in [62]
but this comes with a significant drop in quality. In con-
trast, extreme clicking costs 7s per box and 91%-94% of
those boxes have IoU>0.7. Hence our protocol to annotate
bounding boxes is both faster and more accurate.

5.2. Additional analysis
Per-click response-time. We examine the mean response
time per click during extreme clicking. Interestingly, the
first click on an object takes about 2.5s, while subsequent
clicks take about 1.5s. This is because the annotator needs
to find the object in the image before they can make the
first click. Interestingly, 1s visual search is consistent with
earlier findings [18, 46].
Influence of qualification test and quality control. We
conducted three crowd-sourcing experiments on 200 train-
val images of PASCAL VOC 2007 to test the influence of
using a qualification test and quality control. We report the
quality of the bounding boxes derived from extreme clicks
in Tab. 3. Using a qualification test vastly improves annota-
tion quality (from 75.4% to 85.7% mIoU). The quality con-
trol brings a smaller further improvement to 87.1% mIoU.
Actual Cost. We paid the annotators $0.15 to annotate a
batch of 10 images which, based on our timings, is about

Qualification test Quality control mIoU IoU>0.7
75.4 68.0

X 85.7 91.0
X X 87.1 92.5

Table 3. Influence of the qualification test and quality control on
the accuracy of extreme click annotations (on 200 images from
PASCAL VOC 2007).

$7.7 per hour. The total cost for annotating the whole train-
val set of PASCAL VOC 2007 and the training set of PAS-
CAL VOC 2012 was $147 and $167, respectively.

6. Results on Object Segmentation
This section demonstrates that one can improve segmen-

tation from a bounding box by using also the boundary
points which we obtain from extreme clicking.

6.1. Results on PASCAL VOC
Datasets and Evaluation. We perform experiments on
VOC 2007 and VOC 2012. The trainval set of the segmenta-
tion task of VOC 2007 consists of 422 images with ground-
truth segmentation masks of 20 classes. For VOC 2012, we
evaluate on the training set, using as reference ground-truth
the augmented masks set by [29] (5623 images).

To evaluate the output object segmentations, for every
class we compute the intersection over union (IoU) between
the predicted and ground-truth segmentation mask, and re-
port the mean IoU over all object classes (mIoU). Some pix-
els in VOC 2007 are labeled as ‘unknown’ and are excluded
from evalutation. For these experiments we use structured
edge forests [15] to predict object boundaries, which is
trained on BSD500 [2].
GrabCut from PASCAL VOC GT Boxes. We start with
establishing our baseline by using GrabCut on the original
GT Boxes of VOC (for which no boundary points are avail-
able). Since applying [51] directly leads to rather poor per-
formance on VOC 2007 (37.3% mIoU), we first optimize
GrabCut on this dataset using methods discussed in Sec. 4.
Our optimized model has the following properties: the ob-
ject appearance model is initialized from all pixels within
the box. The background appearance model is initialized
from a small ring around the box which has twice the area



of the bounding box. A small rectangular core centered
within the box whose area is a quarter of the area of the
box is clamped to be object. All pixels outside the box are
clamped to be background. As pairwise potential, instead of
using standard RGB differences, we use the summed edge
responses of [15] of the corresponding pixels. All modifica-
tions together substantially improve results to 74.4% mIoU
on VOC 2007. We then run GrabCut again on VOC 2012
using the exact same settings optimized for VOC 2007, ob-
taining 71.0% mIoU.
GrabCut from extreme clicking. Thanks to our extreme
clicking annotations, we also have object boundary points.
Starting from the optimized GrabCut settings established
in the previous paragraph, we make use of these boundary
points to (1) initialize a better object appearance model, and
(2) choose better pixels to clamp to object. As described
in Sec. 4, we use the extreme clicks to estimate an initial
contour of the object by following predicted object bound-
aries [15]. We use the surface bounded by this contour es-
timate to initialize the appearance model. We also skele-
tonize this surface and clamp the resulting pixels to be ob-
ject. The resulting model yields 78.1% mIoU on VOC 2007
and 72.7% on VOC 2012. This is an improvement of 3.7%
(VOC 2007) and 1.7% (VOC 2012) over the strong baseline
we built. Fig. 4 shows qualitative results comparing Grab-
Cut segmentations starting from GT Boxes (last row) and
those based on our extreme clicking annotations (second-
last row).

6.2. Results on the GrabCut dataset

We also conducted an experiment on the Grabcut
dataset [51], consisting of only 50 images. The standard
evaluation measure is the error rate in terms of the percent-
age of mislabelled pixels. For this experiment, we simulate
the extreme click annotation by using the extreme points of
the ground-truth segmentation masks of the images.

When we perform GrabCut from bounding boxes, we
obtain an error rate of 8%. When using additionally the
boundary points from simulated extreme clicking, we ob-
tain 5.5% error, an improvement of 2.5%. This again
demonstrates that boundary points contain useful informa-
tion over bounding boxes alone for this task.

For completeness, we note that the state-of-the-art
method on this dataset has 3.6% error [71]. This method
uses a framework of superpixels and Multiple Instance
Learning to turn a bounding box into a segmentation mask.
In this paper we build on a much simpler segmentation
framework (GrabCut). We believe that incorporating our
extreme clicks into [71] would bring further improvements.

6.3. Training a semantic segmentation model

We now explore training a modern deep learning system
for semantic segmentation from the segmentations derived

Full Segments from Segments from
supervision GT Boxes extreme clicks

mIoU 59.9 55.8 58.4
Table 4. Segmentation performance on the val set of PASCAL
VOC 2012 dataset using different types of annotations.

from extreme clicking. We train DeepLab [10, 48] based
on VGG-16 [58] on the VOC 2012 train set (5,623 images)
and then we test on its val set (1,449 images). We measure
performance using the standard mIoU measure (Tab. 4). We
compare our approach to full supervision by training on the
same images but using the ground-truth, manually drawn
object segmentations (one instance per class per image, for
fair comparison). We also compare to training on segmen-
tations generated from GT Boxes.

Full supervision yields 59.9% mIoU, which is our upper
bound. As a reference, training on manual segmentations
for all instances in the dataset yields 63.8% mIoU. This is
3.8% lower than in [48] since they train from train+val using
the extra annotations by [29] (10.3k images).

Segments from GT Boxes result in 55.8% mIoU.

Segments from extreme clicks lead to 58.4% mIoU. This
means our extreme clicking segmentations lead to a +2.6%
mIoU improvement over those generated from bounding
boxes. Moreover, our result is only -1.5% mIoU below the
fully supervised case (given the same total number of train-
ing samples).

7. Conclusions

We presented an alternative to the common way of draw-
ing bounding boxes, which involves clicking on imaginary
corners of an imaginary box. Our alternative is extreme
clicking: we ask annotators to click on the top, bottom, left-
and right-most points of an object, which are well-defined
physical points. We demonstrate that our method deliv-
ers bounding boxes that are as good as traditional drawing,
while taking just 7s per annotation. To achieve this same
level of quality, traditional drawing needs 34.5s [62]. Hence
our method cuts annotation costs by a factor 5×without any
compromise on quality.

In addition, extreme clicking leads to more than just
a box: we also obtain accurate object boundary points.
To demonstrate their usefulness we incorporate them into
GrabCut, and show that they leads to better object seg-
mentations than when initializing it from the bounding box
alone. Finally, we have shown that semantic segmenta-
tion models trained on these segmentations perform close
to those trained with manually drawn segmentations (when
given the same total number of samples).
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