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Abstract The objective of this work is to determine if peo-
ple are interacting in TV video by detecting whether they are
looking at each other or not. We determine both the temporal
period of the interaction and also spatially localize the rel-
evant people. We make the following four contributions: (i)
head detection with implicit coarse pose information (front,
profile, back); (ii) continuous head pose estimation in uncon-
strained scenarios (TV video) using Gaussian process regres-
sion; (iii) propose and evaluate several methods for assessing
whether and when pairs of people are looking at each other in
a video shot; and (iv) introduce new ground truth annotation
for this task, extending the TV human interactions dataset
(Patron-Perez et al. 2010) The performance of the methods
is evaluated on this dataset, which consists of 300 video clips
extracted from TV shows. Despite the variety and difficulty
of this video material, our best method obtains an average
precision of 87.6 % in a fully automatic manner.
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1 Introduction

If you read any book on film editing or listen to a director’s
commentary on a DVD, then what emerges again and again is
the importance of eyelines. Standard cinematography prac-
tice is to first establish which characters are looking at each
other using a medium or wide shot, and then edit subsequent
close-up shots so that the eyelines match the point of view of
the characters. This is the basis of the well known 180◦ rule
in editing.

The objective of this paper is to determine whether eye-
lines match between characters within a shot—and hence
understand which of the characters are interacting. The
importance of the eyeline is illustrated by the three exam-
ples of Fig. 1—one giving rise to arguably the most famous
quote from Casablanca, and another being the essence of the
humour at that point in an episode of Fawlty Towers. Our tar-
get application is this type of edited TV video and films. It is
very challenging material as there is a wide range of human
actors, camera viewpoints and ever present background clut-
ter.

Determining whether characters are interacting using their
eyelines is another step towards a fuller video understanding,
and complements recent work on automatic character identi-
fication (Everingham et al. 2006; Cour et al. 2009; Sivic et al.
2009), human pose estimation (Ferrari et al. 2009; Andriluka
et al. 2009; Bourdev et al. 2010; Sapp et al. 2010;Yang et al.
2012), human action recognition (Laptev et al. 2008; Liu et
al. 2009; Marín-Jiménez and Pérez de la Blanca 2012; Raptis
et al. 2012; Sadanand and Corso 2012), and social (Fathi et
al. 2012) and specific interaction recognition (e.g. hugging,
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Fig. 1 Are they looking at each other? Answering this question enables richer video analysis, and retrieval based on where actors interact. From
left to right Friends, Casablanca, Fawlty Towers. The eyeline in the Casablanca shot gives rise to the famous quote “Here’s looking at you, kid”

Fig. 2 Proposed pipeline. a Upper-body detection. b Head detection inside upper-body areas. c Head pose estimation. d LAEO scoring between
pairs of heads. This example would be correctly classified as LAEO

shaking hands) (Patron-Perez et al. 2012; Yang et al. 2012).
Putting interactions together with previous character identifi-
cation work, it now becomes possible to retrieve shots where
two particular actors interact, rather than just shots where the
actors are present in the same scene.

In order to determine if two people are looking at each
other, it is necessary to detect their head and estimate their
head pose. There are two main strands in previous work: 2D
approaches, where detectors are built for several aspects of
the head [such as frontal and profile Sivic et al. (2009)] or the
pose is classified into discrete viewpoints (Tu 2005; Benfold
and Reid 2008; Zhu and Ramanan 2012), or regressed (Osad-
chy et al. 2007). The alternative are 3D approaches, where
a 3D model is fitted to the image and hence the pose deter-
mined (Blanz and Vetter 2003; Everingham and Zisserman
2005). A survey of head pose estimation is given in Murphy-
Chutorian and Trivedi (2009).

In this work, we start by detecting human heads in each
video frame separately and then grouping them over time
into tracks, each corresponding to a different person. Next,
we estimate the pitch and yaw angles for each head detec-
tion. For this, we propose a 2D approach and train a Gaussian
process regressor (Rasmussen and Williams 2006) to esti-
mate the head pitch and yaw directly from the image patch
within a detection window using publicly available datasets.
In the third step, we explore three methods to determine if two
people (tracks) are Looking At Each Other (LAEO, Sect. 2).
Two people are LAEO if there is eye contact between them.
We start with a simple 2D analysis, based on the intersection

of gaze areas in 2D defined by the sign of the estimated yaw
angles (Sect. 2.1). In a more sophisticated alternative, we use
both the continuous yaw and pitch angles as well as the rel-
ative position of the heads (Sect. 2.2). Finally, we propose a
‘2.5D’ analysis, where we use the scale of the detected head
to estimate the depth positioning of the actors, and combine
it with the full head pose estimate to derive their gaze vol-
umes in 3D (Sect. 2.3). Figure 2 summarizes the proposed
pipeline.

We apply these methods (Sect. 5) to the TV human inter-
actions dataset (TVHID) (Patron-Perez et al. 2010). This is
very challenging video material with far greater variety in
actors, shot editing, viewpoint, locations, lighting and clut-
ter than the typical surveillance videos used previously for
classifying interactions (Park and Aggarwal 2004; Ba and
Odobez 2009; Waltisberg et al. 2010) where there is a fixed
camera and scene. We provide additional ground truth anno-
tation for the dataset, specifying which shots contain people
looking at each other. Originally, the dataset only had anno-
tations for four specific interactions (hand-shake, high-five,
hugging and kissing) but there are many other shots where
people are looking at each other.

In a thorough experimental evaluation on the TVHID, we
show that the full head pose estimate (i.e. yaw and pitch
angles) in combination with the relative position of the heads
in a 3D scenario are needed for most real situations to clearly
define if two people are LAEO.

This paper is an extended version of our preliminary work
on this subject Marín-Jiménez et al. (2011).
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Fig. 3 Left: Intersection of gaze areas in 2D. We show heads (Pl and
Pr ) as red rectangles and gaze areas (Gl and Gr ) as yellow dashed
rectangles. The head orientations are represented by green arrows (Ol
and Or ). This method would incorrectly say that these people are not
LAEO, since their 2D gaze areas do not intersect. Right: Geometric
constraints in 2D. We show the estimated yaw and pitch angles as yel-

low vectors (yaw θ determines if left or right facing and length; pitch α

determines orientation). The blue vector γlr defines the orientation of
the vector going from B to C in the image plane. The angle defined by
these vectors for (B,C) would classify such pair as LAEO (Color figure
online)

2 Classifying Pairs of Heads as Looking at Each Other
(LAEO)

Let us assume that we know the spatial location of the persons
present in a video sequence and we have information about
their head orientation as well.

For each person i in a video frame, let

Wi = (xi , yi , wi , hi , θi , αi , σθi , σαi )

be an image window containing the head, with top-left coor-
dinates (xi , yi ), width wi , height hi , yaw angle θi (rotation
about Y -axis), pitch angle αi (rotation about X -axis). The
values σθi and σαi represent the uncertainty in the estimate
of θi and αi , respectively. Using this information, we propose
in this section three methods for classifying a pair of persons
as LAEO or not. This is the main contribution of this paper.
In Sect 3 we explain how to perform head pose estimation
automatically (i.e. we use Gaussian Process regressors), and
in Sect. 4 we explain how to detect and tracks heads (i.e.
we build tracks of head detections obtained from previously
computed upper-body tracks).

2.1 Intersection of Gaze Areas in 2D

The simplest method we propose only considers the head
pose as discretized into just two directions, i.e. facing left
or right. For this we only use the estimated yaw angle and
discard the pitch. In addition to this binary head pose, this
method also uses the image position of the head window and
its height.

We define as gaze area Gi the image region a person head
Pi is looking at: a horizontal rectangle extending from the
head towards the gaze direction (Fig. 3left). The height of
Gi is given by the height of Pi , while the width is given
by the x position of the farthest other head in the scene. To

classify whether two heads Pl , Pr are LAEO, we define the
LAEOG A(Pl , Pr ) function. Let (xl , yl) and (xr , yr ) be the
centres of Pl , Pr , satisfying the condition (xl ≤ xr ), and
Ol , Or be their orientation (i.e. +1 facing left, −1 facing
right). With these definitions, LAEOG A is

LAEOG A(Pl , Pr ) = IoU(Gl , Gr ) · δ(Ol · Or < 0) (1)

where IoU(Gi , G j ) = Gi ∩G j
Gi ∪G j

is the insersection-over-union
of the heads’ gaze areas Gi , G j (Fig. 3 left); the Kronecker
delta δ(c) is 1 if condition c is true, and 0 otherwise.

2.2 Geometric Constraints in 2D

The second method we propose takes into account both the
yaw and pitch angles defining the full head pose, as well as
the image position of the two heads. Two people are deemed
to be LAEO if all the following three conditions are true

(i) the person on the left has a positive yaw angle and the
person on the right has a negative yaw angle

(ii) the cosine of the difference between their yaw angles is
close to -1

(iii) the vectors defined by the pitch angles are similar to the
vectors that join the heads, in both directions.

Figure 3 (right) shows an example that should be highly
scored as LAEO.

For a head Pi , let (xi , yi ) be the coordinates of its centre,
θi , αi the estimated yaw and pitch angles, and σθi , σαi the
uncertainty associated at each estimated angle, respectively.
We define the following function LAEOGC (Pl , Pr ) to for-
malize the above constraints and decide if two heads Pl , Pr

are LAEO (with (xl ≤ xr )):

LAEOGC (Pl , Pr )

= βθ · [δ(θl · θr < 0 ∧ θl > θr ) · (1 − cos(θl − θr )) · 0.5]
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Fig. 4 Geometric constraints in 3D. (left) Original video frame. (mid-
dle) 3D representation of a scene with two people. We show heads
(spheres) and their gaze volumes (cones). (right) View from above,
with heads (circles) and gaze direction vectors (blue arrows) dl and dr
defined by the yaw and pitch angles. Green lines are the boundaries of

the conic gaze volumes. The red vector is jlr and goes from Pl to Pr .
With this configuration, Pr lays inside Pl gaze area but Pl does not lay
inside that of Pr . Therefore, the two people are correctly classified as
not LAEO (Color figure online)

+βα · [
(1 + cos (αl − γlr )) · 0.25

+ (1 + cos (αr − γrl)) · 0.25
]

(2)

where γi j is the orientation of the vector going from Pi to
Pj in the image plane; the symbol ‘−’ between two angles
denotes their orientation difference; βθ and βα are weights,
so that βθ + βα = 1. Note that each row of Eq. (2) (omitting
their β) ranges in [0, 1]. Therefore, LAEOGC ranges in [0, 1],
with 1 the best possible score.

There are many possible choices for this scoring function,
as long as they enconde the three conditions stated above.
In our case, the first term of Eq. (2) encodes conditions (i)
and (ii), based on the yaw angles. The second term encodes
condition (iii), based on the pitch angles and the position of
the heads.

The weights βθ and βα can be defined as functions of the
uncertainties σθ and σα associated to the angles θ and α,
respectively. These uncertainties are output by the Gaussian
Process regressors along with the angle estimates themselves
(Sect. 3). Hence, we set βθ for a test pair of heads Pl , Pr as

βθ = (σ−1
θl

+ σ−1
θr

)/(σ−1
θl

+ σ−1
θr

+ σ−1
αl

+ σ−1
αr

) (3)

and βα = 1 − βθ . This dynamic weighting gives more
weight to reliable estimates of the head orientation, while
reducing the negative impact of poor estimates on the LAEO
score.

2.3 Geometric Constraints in 3D

The most complex method we propose operates in a simpli-
fied 3D space. We place each person’s head Pi in a common
3D coordinate system by using the image coordinates of the
head centre as (xi , yi ) and deriving the depth coordinate zi

from the head size in the image. Coordinates zi are derived
as a direct proportion between all the heads present in the
scene, by assuming that in such 3D world all the heads have

the same size and, therefore, the height of the detection win-
dow indicates the relative distance of the person to the camera
(i.e. larger heads in 2D are closer to the camera than smaller
ones). So, heads are z-ordered so that the largest head in
the image is the closest one to the camera. This implicitly
assumes that all people have approximately the same head
size in the 3D world. This is only a problem in rare cases,
i.e. scenes containing both adults and small children, which
have significantly different head sizes.

The gaze volume of a head Pi is represented as a 3D
cone Ci with apex at (xi , yi , zi ) and axis orientation defined
by the estimated yaw and pitch angles (Fig. 4). We classify
two heads Pl and Pr as LAEO if Pl lays inside Cr , and Pr

lays inside Cl . Note how this method uses all the available
information.

More formally, we define the LAEO3D score by the fol-
lowing equation:

LAEO3D(Pl , Pr ) = (ϕ − 	(jlr , dl) + (ϕ − 	(jrl , dr ))

2ϕ

(4)

where the angle ϕ represents the aperture of the gaze cone
that is a free parameter to be learnt during training (see
Sect. 5.3); 	(·, ·) is the angle between two vectors; di is
a vector defined by the yaw and pitch angles of Pi ; jlr is the
vector from Pl to Pr , i.e. defined as (xl , yl , zl) → (xr , yr , zr )

(and vice-versa for jrl ). Figure 4 illustrates this score. Note
how the magnitude of di is irrelevant, as it is only used inside
the 	 function.

3 Continuous head pose estimation

We describe here our approach to automatically estimate two
head pose angles: yaw (around the Y axis) and pitch (X axis).
We do not consider roll (Z axis). We use a Gaussian Process
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Fig. 5 Head pose datasets. (top) Samples from CMU-PIE dataset. (bottom) Samples from IDIAP-HP dataset

(GP) to directly regress from the image patch within a head
detection window to the two pose angles.

3.1 Training a Gaussian Process head pose regressor

For each detected head, we crop an N × N image window
H centred on it, where N is the number of pixels of the
largest side of the detection window. Then, H is resized to a
predefined common size N ′ × N ′. Given an observed head
window H , the goal is to predict two angles (θ, α) conveying
its pose with regard to the camera viewpoint. We formulate
this problem in terms of regression, and train two separate
regressors, one for yaw (θ ) and one for pitch (α). As the
method is exactly the same, we restrict the explanation to yaw.

The goal is to find a real-valued regression function θ̂ =
f (g(H)), so that θ̂ ≈ θ , where g(H) is a feature vector of
H , and θ and θ̂ are the real and estimated angles respectively.
We use a histogram of oriented gradients (HOG) Dalal and
Triggs (2005) as the head descriptor g. A HOG descriptor
encodes the spatial structure of a rather rigid object through
a set of histograms of oriented gradients computed in each
cell of a grid overlaid on the window covering the object.

A Gaussian process (GP) (Rasmussen and Williams 2006)
regressor f (g(H)) is employed for estimating the angle. GPs
are attractive because they are non-parametric models, and
therefore can flexibly adapt to almost any distribution of the
data (i.e. provided the mean, covariance and likelihood func-
tions). Moreover, at inference time, they return both the esti-
mate θ̂ as well as its uncertainty σθ (i.e. the mean and vari-
ance of the Gaussian posterior). This offers the possibility
to downweight uncertain pose estimates in later processing
stages (e.g. Sect. 2.2).

3.2 Implementation Details and Experimental Validation

A GP (Rasmussen and Williams 2006) is a collection of
random variables, any finite number of which have a joint

Gaussian distribution. A GP is completely specified by its
mean function m and covariance (or kernel) function k. Given
an input vector x, the mean function m(x) and the covariance
k(x, x′) of a real process f (x) are defined as

m(x) = E [ f (x)] , (5)

k(x, x′) = E
[
( f (x) − m(x))( f (x′) − m(x′))

]
(6)

where E denotes expectation, and k(x, x′) indicates that the
covariance function is evaluated at the points x and x′.

Therefore, we write the GP as

f (x) ∼ G P
(
m(x), k(x, x′)

)
(7)

where f (x) is a stochastic function that is distributed as a GP
with parameters m and k.

We use a linear mean function m(x) = axT + c, where a
and c are the hyperparameters of m. We investigate exper-
imentally various functional forms for the covariance k
below.

For making predictions (i.e. computation of the posterior),
one also needs to define the functional form of the likelihood
function. A common choice is a Gaussian likelihood, since it
allows to carry out exact inference (Rasmussen and Williams
2006).

We use two datasets to learn yaw and pitch angles. The
first is the CMU Pose, Illumination and Expression (CMU-
PIE) dataset (Sim et al. 2003). It contains images of 68 peo-
ple from 13 different camera viewpoints, corresponding to 9
discretized yaw angles [−90◦, 90◦]. Images have been cap-
tured in two different sessions and in each session there are
four subsets, corresponding to different types of variations:
expression, illumination, lighting and talking. The top row
of Fig. 5 shows some examples of images contained in the
dataset.

The second dataset is the IDIAP head pose (IDIAP-
HP) (Ba and Odobez 2005). It contains 8 videos recorded
in a meeting room and 15 videos in an office. Yaw, pitch
and roll angles ground-truth is provided for each person in
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Table 1 RMSE for yaw and pitch

SEiso SEisoWN SEisoPoly RQiso Lin

σ 2
f exp

(
− 1

2l2 (x−x′)T (x−x′)
)

σ 2
f exp

(
− 1

2l2 (x−x′)T (x−x′)
)

+σ 2
f ′ δ

(
x−x′)

σ 2
f exp

(
− 1

2l2 (x−x′)T (x−x′)
)

+σ 2
f ′ (xT x′ + c)3

σ 2
f

(
1+ 1

2αl2 (x−x′)T (x−x′)
)−α

(xT x′ + 1)/ l2

Yaw 15.73 20.42 20.36 20.40 25.86

Pitch 10.09 10.10 10.11 10.16 10.94

Average RMSE performance for various functional forms. The minimum values (i.e. lowest error) for each angle are marked in bold. See main text
for discussion

every frame. The bottom row of Fig. 5 shows some examples
of cropped frames from videos of the meeting room sub-
set. Note that, in contrast to CMU-PIE dataset, people pose
diverse pitch angles.

In order to train the head pose estimators, the first step is
to detect all the heads from the training images by using the
detector of Sect. 4.1. Next, all detected heads are normalized
to a common size of 48 × 48 pixels and HOG features are
extracted. For computing the HOG descriptor, we use non
overlapping cells of 8 × 8 pixels and 9 orientation bins for
quantizing the orientation of the gradient vectors. We experi-
mented with other configurations for HOG, but they brought
no improvement. Moreover, this configuration is the same as
the one used by our head detector, enabling to reuse previous
computations. The HOG features are used as input x to the
GP regressor, which outputs the target angle (i.e. θ or α). We
learn the parameters of the two GP regressors by using the
GPML 3.1 library Website (2011a).

We learn the yaw estimator from the subsets expression
and illumination of CMU-PIE dataset, and the pitch estimator
from the subset meeting room of IDIAP-HP dataset. The set
of training data for yaw angle is D = {(g(Hi ), θi )}, where
g(Hi ) is the HOG descriptor of the i-th training sample (i.e.
head) and θi is its ground-truth yaw angle. In order to evaluate
the yaw GP regressor, we split the dataset in two parts: six
random people are used for validation and the remaining
ones for training. We have repeated this procedure for five
trials. We measure performance as the root mean squared
error (RMSE) averaged over all validation sets, where the
error is measured as the difference between the ground-truth
angle and the estimated one. We repeat the same procedure
for the pitch GP regressor, but using only one for validation
in each trial, and all others for training.

We tested various functional forms for the covariance
function: diagonal squared exponential (SEiso), SEiso plus
white noise (SEisoWN), SEiso plus third-order polynomial
(SEisoPoly), rational quadratic (RQiso), and linear with bias
(Lin). The number of hyperparameters that have to be learned
for each covariance function is different: 2 for SEiso, 3 for
SEisoWN, 4 for SEisoPoly, 3 for RQiso and 1 for Lin. Each
entry in Table 1 reports the regression performance for a

particular covariance function and angle. Note how SEiso
leads to the best performance for both angles (yaw and pitch),
i.e. 15.73 average RMSE for yaw and 10.09 for pitch. The
worst results are delivered by a linear covariance function
(i.e. Lin).

As a baseline, we trained and validated a linear regressor
on the same data (using Matlab’s robustfit function). This
linear regressor has about twice the average RMSE of the GP
with SEiso covariance. This demonstrates that GP regression
is a much better choice than simple linear regression for this
task.

After the above evaluations, we chose GP regression with
a SEiso covariance and we trained a final GP regressor from
all the available samples. This final regressor is used in the
LAEO experiments (Sect. 5).

4 Detecting and Tracking Heads in Video Shots

We explain here how we detect and track the heads of the peo-
ple present in a video shot. This is in fact the first step in our
processing pipeline. We split the task into the following sub-
tasks: (i) human upper-body detection in individual frames;
(ii) grouping upper-body detections over time into tracks;
(iii) detecting heads within upper-body detection areas; and,
(iv) grouping head detections into tracks.

We propose this two-level pipeline because upper-body
detection is more robust to clutter than head detection, as
it benefits from wider, more distinctive context. The precise
localization of the head within the limited area defined by
an upper-body detection can then proceed safely. In partic-
ular, direct detection of profile heads in uncontrolled scenes
would otherwise produce many false positives (Jones and
Viola 2003). On the other hand, although we already have
tracks in step (ii), another tracking stage is performed in step
(iv) in order to resolve situations where two heads are so
close that they fall into the same upper-body bounding box
(e.g. see Fig. 6, bottom-left).

The detectors are described next, followed by the tracking
process in Sect. 4.2.
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Fig. 6 Examples of UB (dashed) and head (solid) detections. The head detector is only run inside UB detection windows. Note how heads are
localised in various relative positions within the UB windows, adapting to the image content, including back views

4.1 Upper-Body and Head Detection

For both the upper-body (UB) and head detectors we use the
model of Felzenszwalb et al. (2010), and train using the code
released at Website (2010). This code automatically learns
the actual components of the detector based on the aspect
ratio of the annotated bounding boxes of the positive training
samples. However, it is necessary to indicate the number of
desired components. In our case, we set one component for
the upper-body detector (without a mirror component), two
components for the frontal/profile head detector (plus the
corresponding mirror ones) and one component for the back-
view head detector (plus the mirror one). Figure 7 shows the
root filters of the components generated by the learning code.

Figure 6 shows examples of UB and head detections in a
variety of situations (i.e. different viewpoints, scales, illumi-
nation, clothing, clutter, ...).

4.1.1 Training and Implementation Details

We have used a total of 1,122 annotated video frames from
Hollywood movies (Kläser et al. 2010) as positive training

samples for the upper-body detector. These contain upper-
bodies viewed from different viewpoints and at different
scales. Some examples of UB used during training are shown
in Fig. 8 (left). As negative training samples, we used those
images in the INRIA-person dataset Website (2005) which
do not contain people.

The very same set of Hollywood video frames has been
used for training the frontal/profile view components of the
head detector. Since the Hollywood movies dataset contains
very few back-views of heads, the positive training set for
the back-view components of the head detector are manually
annotated on 199 video frames extracted from the IDIAP
head pose dataset (Ba and Odobez 2005). Some examples of
heads used for training are shown in Fig. 8 (right). As this
head detector is intended to be run only inside upper-body
windows, we provide negative training samples from the area
surrounding the head.

4.2 Person Tracking

We describe here the tracker we use to connect over time the
single-frame detections produced in the previous stage. The

Fig. 7 Models for the multi-view upper-body and head detectors. a
Root filter of the UB detector. This model contains a single component
trained from a mixture of all viewpoints. b Root filters of the 6 com-

ponents of the head detector. Each component provides coarse infor-
mation about the head orientation. From left to right two near frontal
viewpoints, two profile viewpoints and two back viewpoints
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Fig. 8 Examples of samples used for detector training. Left for upper-body detector; right for head detector. Note the variety of poses, people,
clothing (in the UB case), and rear of heads

same tracker is used to track upper-body detections or head
detections.

For this we design a tracker that combines successful
ideas from recent works. As in Everingham et al. (2006),
detections in different frames that are connected by many
KLT point tracks (Shi and Tomasi 1994) are more likely
to be grouped in the same track. As in Sivic et al. (2005)
for faces, we exploit the fact that detections with similar
appearance are more likely to be the same person and there-
fore should be grouped even if far away in time. This helps
recovering from full occlusion. Finally, we borrow from Fer-
rari et al. (2008) the idea of casting the tracking process as
a clique partitioning problem. This provides a clear objec-
tive function and a well-explored approximate minimization
algorithm.

4.2.1 Affinity Measures

More formally, we combine three different kinds of features
as cues for grouping: (i) the location of a detection window,
(ii) its appearance, and (iii) the motion of point tracks inside
it. We measure the affinity between every pair of detections
Di , D j in the whole shot according to each of these features.

The location affinity Wloc(i, j) is computed as the area
of intersection-over-union between Di and D j . Note how
this takes into account both the position and the scale of
the detections. This was the only affinity term used in our
previous work Ferrari et al. (2008).

The appearance of each detection is represented by a
normalized LAB color histogram. The appearance affinity

between two detections Di , D j is based on the Euclidean
distance E(i, j) between their LAB histograms. The final
appearance affinity matrix is Wapp(i, j) = (2 − E(i, j))/2.

The last affinity measure counts how many KLT point
tracks that pass through Di also pass through D j . More pre-
cisely, let Sk be the set of KLT tracks passing through a
detection Dk . Then Wklt (i, j) is the intersection-over-union
of the sets Si and S j . Essentially Wklt (i, j) measures ‘how
strongly’ Di and D j are connected by point tracks. Figure 9
(right) shows the set of KLT tracks associated to the two UB
detections.

This affinity measure is more robust than the location one,
as it takes into account the motion inside the detection win-
dow. This is especially useful when two persons are close
in the image, so that their detection windows overlap (see
Fig. 9, right).

4.2.2 Grouping Detections

The three affinity matrices Wloc, Wapp, Wklt are combined
into a single matrix Wall as follows

Wall(i, j) = Wloc(i, j) · Wapp(i, j) · Wklt (i, j) · Wtd(i, j)

Wtd(i, j) = exp(−(|ti − t j | − 1)2/σ 2
td) (8)

where ti , t j are frame indexes of bounding boxes i , j and
Wtd(i, j) is a damping factor limiting similarity to short time
difference. We group detections based on Wall using the
Clique Partitioning (CP) algorithm of Ferrari et al. (2001),
under the constraint that no two detections from the same

Fig. 9 Person tracking—motion affinity term. (left) Input upper-body detections in a video frame. (middle, right) KLT point tracks are one of the
three cues we use to robustly group detections into tracks
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Fig. 10 Person tracking through full occlusions. Subsequent frames
(t , t + 66, t + 119) from a video shot where actors swap positions in
the scene. Bounding box colors depict different track IDs. Tracks are

initially broken into multiple tracklets due to full occlusions (top row).
Connecting tracklets based on appearance similarity enables tracking
through full occlusion (bottom row)

frame can be grouped. This returns an initial set of track-
lets. These tracklets might be interrupted by occlusions, e.g.
a person moving behind an occluder would be broken into
multiple tracklets (see Fig. 10, top).

In a second stage, tracklets are joined together into full
long-term tracks based purely on appearance similarity. We
define the similarity between two tracklets as the median
appearance similarity Wapp between all pairs of frames in
the tracklets and group tracklets using CP. This second stage
reconnects tracklets belonging to the same person undergo-
ing occlusion (see Fig. 10, bottom).

4.2.3 Post-processing

The process above carefully groups the detections returned
by the detector operating in individual frames. However, as
the detector is not perfect, it might miss a person in a few
frames, even along an otherwise perfect track In the last stage
we fill these ‘holes’ by separate linear interpolation of the
window position and size within each tracklet (we assume
fixed aspect-ratio of the detection windows). In addition,
the position and size values are smoothed over time using
a Gaussian filter.

Once the tracking process has finished, false-positive
tracks are discarded in a discriminative manner. Inspired
by Kläser et al. (2010), we define a feature vector using the
following information: number of detections in the track;
ratio of number of detections in the track to the shot length;
minimum, maximum, average and standard deviation of the
detection scores in the track; minimum, maximum, aver-
age and standard deviation of the bounding-box width (note
that our UB is squared); absolute and relative ranking posi-

tion of track in the shot (based on the sum of the detection
scores); and, maximum and average overlap (i.e. intersection-
over-union) of the track with the other tracks in the same
video shot. Then, we train a linear SVM on these feature
vectors. For training purposes, we label a track as posi-
tive if it goes through a ground-truth bounding-box in at
least one video frame (i.e. overlaps at least 0.5 in terms of
intersection-over-union). Otherwise, the track is labelled as
negative.

4.3 Performance of People Detection

We evaluate the performance of the UB detector over test data
extracted from the TV human interactions dataset (TVHID)
of Patron-Perez et al. (2010). We evaluate detection rate (DR)
versus the average number of false positives per image (FPPI)
over all the 27,094 frames that compose the dataset. Follow-
ing the standard PASCAL VOC protocol (Everingham et al.
2010), we count a detection as correct if the intersection-over-
union with any ground-truth bounding-box exceeds 0.5.

Figure 11 reports the performance of our method. The
solid green line corresponds to the UBs after tracking,
whereas the dashed blue line corresponds to the raw UB
detections (i.e. before tracking). The tracker improves DR
performance over the whole FPPI range.

Note how our method can handle persons standing close
together up to a good degree (see Fig. 6). However, for accu-
rately detecting persons in more extreme cases such as when
a person is mostly occluded by the other, a separately trained
‘double person detector’ might be necessary, as proposed
by Tang et al. (2012).
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Fig. 11 Performance of the generic viewpoint upper-body detector and
tracker. Detection rate (DR) versus false positives per image (FPPI)
are evaluated on the TVHID dataset. The two curves correspond to
detecting upper-bodies independently in each frame (blue) and after
tracking (green). The latter uses the entire process described in Sect. 4.2,
including automatically removing false-positive tracks (Color figure
online)

5 Experimental Results

5.1 LAEO Dataset

We evaluate our LAEO classifiers on the TV human inter-
actions dataset (TVHID) of Patron-Perez et al. (2010). It
contains a total of 300 video clips grouped in five classes:
hand-shake, high-five, hug, kiss and negative. Each video clip
might be composed of several shots, and we detect the shot
boundaries as maxima in the colour histogram differences
between consecutive frames (Kim and Kim 2009).

For our task, we have provided additional annotation for
all the videos by assigning one of the following labels to each
shot:

– label 0 no pairs of people are LAEO
– label 1 one or more pairs of people are LAEO in a clearly

visible manner
– label 2 a pair of people are LAEO, but at least one of

them has occluded eyes (e.g. due to viewpoint or hair)
– label 3 a pair of people are facing each other, but at least

one of them has closed eyes (e.g. during kissing).

There are a total of 443 video shots, where 112 have label
0, 197 label 1, 131 label 2 and 3 label 3. Therefore, the dataset
contains 112 negative (label 0) and 331 positive samples
(labels 1, 2 and 3). Note that we do not distinguish the three
positive labels in the experiments and, for example, we treat

looking at each other with closed eyes as a positive. Figure
12 shows an example for each LAEO label. Both the LAEO
annotations and the shot boundaries are available at Website
(2011b).

5.2 Scoring Pipeline

We evaluate here the perfomance of the proposed LAEO
classifiers on the following task: is there any pair of people
LAEO at any time in this video shot?

To assign a LAEO score to a shot we apply the following
pipeline:

(i) assign a LAEO score to each pair of people in every
frame using one of the methods in Sect. 2. Heads
detected by the back-view component are assigned
a yaw angle of −135◦ or +135◦, depending if they
are facing left or right. For the rest of the cases
(i.e. frontal/profile head components), the yaw angle
returned by the GP regressor is used (i.e. in the range
[−90◦, 90◦]);

(ii) assign a LAEO score to each frame, as the maximum
over all pairs of people it contains;

(iii) slide a window along the temporal axis and average the
scores of all frames in the window that are greater than
a threshold T ;

(iv) assign a LAEO score to the shot, as the maximum over
all temporal window scores.

Intuitively, these steps will lead to higher scores for pairs
of heads that are LAEO over a sustained period of time.
This avoids producing false positives for accidental geo-
metric alignments over a few frames (as opposed to simply
averaging the thresholded scores over frames). We evaluate
performance on the TVHID dataset, using the annotations
described above in Sect. 5.1. Each method is used to score
every shot, and then the average precision (AP) is used to
compare the performance of the methods.

5.3 Training-Testing Setup

The TVHID release of Patron-Perez et al. (2010) defines two
disjoint partitions. We run experiments on two trials, where
one partition is used for training and the other for testing, and
then report mean AP (mAP) over the two trials.

We set the free parameters of the proposed LAEO scoring
methods so as to maximize AP on the training set, using grid
search. These parameters are: (i) the aperture φ of the cone
in the range [15,45] in steps of 5, for the method of Sect. 2.3;
(ii) the threshold T on the LAEO scores used by all methods
during the temporal window averaging. We tried T the range
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Fig. 12 Example LAEO labels. Top-left label 0 (no LAEO). Top-right
label l (clearly visible LAEO). Bottom-left label 2 (LAEO but with
eyes occluded). Bottom-right label 3 (LAEO but with closed eyes). For

our experiments, classes 1, 2 and 3 are considered as positive (green
plus symbol), and class 0 as negative (red minus symbol) (Color figure
online)

[0.2,0.5] in steps of 0.1; and, (iii) the length of the temporal
window W in the range [5,11] in steps of 2.

5.4 LAEO Baseline

In addition to the three LAEO methods proposed in Sect. 2,
we also experiment with a baseline (BL) which, instead of
using estimated angles, uses the coarse directional informa-
tion provided by our head detector (i.e. which model com-
ponent triggered the detection) to define gaze areas as it in
Sect. 2.1. Equation (1) is used to score person pairs. Note
that this baseline computes neither yaw nor pitch angles.

5.5 Degrees of Automation

In addition to evaluating the proposed LAEO scoring meth-
ods, the experiments evaluate the impact of the different
stages of our pipeline by replacing them with ground-truth
annotations (for the upper-body detector and for the yaw esti-
mator).

5.5.1 Annotated UBs and Discretized Yaw (GT UB+GT
Yaw)

In this experiment we use the ground-truth upper-body anno-
tations included in TVHID to estimate the position of the
head. We do the following coversion: given an upper-body

annotation defined by (x, y, w, h)—top left corner at (x, y)

with width w and height h—the estimated head window is
computed as (x + 0.25 · w, y, 0.6 · w, 0.65 · h). In addition,
the annotated head orientation is used as an approximation of
the yaw angle. The following five head orientations are possi-
ble in the ground-truth: profile-left, frontal-left, frontal-right,
profile-right and backwards. For our experiments, we map
such orientations to the following yaw angles in degrees:
−90, −45, 45, 90 and 180. Since information about pitch
angle is not annotated, we set it to 0. Note that TVHID does
not contain UB annotations in shots where the UB is not fully
visible (i.e. face close-ups). We assign a LAEO score of 0 to
such shots.

5.5.2 Annotated UBs with Automatic Head Detection and
Head Pose Estimation (GT UB+Auto Head)

In this experiment we use the annotated upper-bodies
included in TVHID to define the tracks of upper-bodies, as
in the previous experiment. But all the rest of the processing
is automatic (i.e. head detection and head pose estimation).
Note that in this experiment we already use the new back-
view head detector during the head detection stage.

5.5.3 Fully Automatic System

This experiment covers the fully automatic system proposed
in this work.
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We report results for several variants: (i) the system with-
out using the back-view head detector. This corresponds to
the results we previously published in Marín-Jiménez et al.
(2011) (“Fully auto”); (ii) the system with the new back-view
component of the head detector, used to retrieving more heads
only (“Fully auto+HB”); (iii) the system using the back-
view component to also provide a rough information about
the yaw angle of the head, as discussed in Sect. 4.1 (“Fully
auto+HB+BA”).

5.6 Results

Table 2 summarizes the mAP over the two test sets, once the
parameters have been optimized over their respective train-
ing sets, for each LAEO method separately. Note that in the
experiment “GT UB+GT yaw” the baseline method (BL) is
not relevant since the head detector is not used (i.e. the com-
ponents fired by the head detector are needed by BL, but
only the ground truth yaw orientation is used in the referred
experiment). For placing results in a proper context, the ratio
of positive LAEO over the whole dataset is 0.75, and con-
sequently the chance performance of the system is an AP of
0.75.

Figure 13 shows the precision recall curves of the pro-
posed methods for the test set 2 (top row) and test set 1
(bottom row) by using the fully automatic systems with-

Table 2 Summary of LAEO experiments

GA GC 3D BL

GT UB+GT yaw 0.869 0.915 0.925 –

GT UB+auto head 0.855 0.893 0.896 0.865

Fully auto (Marín-
Jiménez et al.
2011)

0.822 0.846 0.862 0.816

Fully auto+HB 0.845 0.873 0.876 –

Fully auto+HB+BA 0.841 0.855 0.863 0.842

Each entry corresponds to the average AP over the test sets. GA inter-
section of gaze areas in 2D (Sect. 2.1); GC geometric constraints in
2D (Sect. 2.2); 3D geometric constraints in 3D (Sect. 2.3); BL baseline
(Sect. 5.4); HB head back detector; BA backview angle

out (Marín-Jiménez et al. 2011) (left) and with (right) back-
view head detection (“Fully auto+HB”).

5.6.1 Discussion

The results reported in Table 2 allow different levels of com-
parison. We can compare different LAEO scoring methods,
keeping the degree of automation and the use of the head-
back detector fixed (i.e. compare different values within a
row). Comparing BL to GA suggest that using the sign
of the estimated yaw angles is roughly equivalent to using
the coarse head direction represented by which component
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Fig. 13 Precision recall curves on test sets. (left) Fully automatic sys-
tem without back-view head detection (Marín-Jiménez et al. 2011). Top
test set 2. Bottom test set 1. (right) Fully automatic system with back-

view head detection (“Fully auto+HB”). Top test set 2. Bottom test set
1. In the legend, the AP of each method is shown in parenthesis
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Fig. 14 Test shots ranked according to geometric constraints in 3D.
(Top two rows) Top 12 shots from partition 2 of TVHID, training on
partition 1. The frames with red border are (arguable) false positives.
(Bottom two rows) Top 12 shots from partition 1 of TVHID, train-

ing on partition 2. Note the variety of situations where the proposed
method works properly: different scales, poor illumination, cluttered
backgrounds, diverse clothing and back-views of people (Color figure
online)

of the head model triggered the detection (Sect. 5.4). The
higher performance of GC over GA demonstrates the impor-
tance of the information provided by both continuously esti-
mated angles and of the 2D spatial relations between heads.
Finally, the most sophisticated LAEO method (3D) consis-
tently delivers the best results in all experiments, although
in some cases by a modest amount. The use of a full 3D
reasoning (i.e. including the 3D head pose vectors and the
relative position of the people in a 3D coordinate system) is
appealing, but we must note that the mAP improvement of
the 3D method over GC is small, as shown in the top row of
Table 2, where the available ground-truth information about
people location and their head pose is used.

We can compare performance along another axis by keep-
ing the LAEO scoring method fixed and varying the degree
of automation. The better performance of “GT UB+GT
yaw” over “GT UB+auto head” highlights the importance
of having good head positions and yaw estimates, especially
for the GC and 3D LAEO scoring methods. Comparing
“GT UB+auto head” to “Fully auto+HB”, we can see that
the mAP decreases significatly due to the imperfection of
automatic upper-body detection, which include false posi-
tives and misses some true positive persons. This fact high-
lights the importance of using a good person detector and
tracker, as the subsequent stages of the pipeline depend on
them.

123



Int J Comput Vis

Finally, comparing “Fully auto+HB” to “Fully auto”
(Marín-Jiménez et al. 2011), we can see that mAP is
improved for all the LAEO methods. This indicates that
detecting back-view heads improves the performance of
the system, as it enables more LAEO cases to be covered.
However, additionally using the angles associated with the
back-view components of the head detector does not further
improve the LAEO score, since these angles are very impre-
cise (“Fully auto+HB+BA”).

In summary, the best mAP that we can achieve with a fully
automatic method is 0.876, which is considerably better than
both the baseline and chance levels. Our method is able to
localise the LAEO pair both spatially and temporally. Fig-
ure 14 shows the middle frame of the highest scored temporal
window for each of the top 12 ranked shots, according to 3D
LAEO scoring method in experiment “Fully automatic+HB”.
Note the variety of scenarios where the method sucessfully
works. Only two arguable false positives are present among
those 24 video shots.

6 Conclusions

We presented a technique for automatically determining
whether people are looking at each other in TV video, includ-
ing three methods to classify pairs of tracked people. Our best
method uses the scale of the detected heads to estimate the
depth positioning of the actors, and combines it with the full
head pose estimate to derive their gaze volumes in 3D. While
we report quantitative performance at shot level, our method
allows the interacting people to be localised both spatially
(i.e. the pair of heads with the highest LAEO score) and tem-
porally (i.e. temporal sliding window). In conclusion, the
recognition of LAEO pairs introduces a new form of high-
level reasoning to the broader area of video understanding.

As future work, we plan to study the LAEO problem from
the point of view of learning a classifier for LAEO given
descriptors over pairs of people as input. For training, this can
be cast as a Multiple Instance Learning problem (Dietterich
and Lathrop 1997).
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7 Appendix: Released Materials

We have released a variety of output from the research that
led to this paper:

(i) the video shot decomposition Website (2011b) of the
TVHID videos;

(ii) the LAEO annotations Website (2011b) on TVHID used
in our experiments; and,

(iii) the head detector Website (2011c) trained to deal with
different viewpoints.
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