DANIEL KUETTEL, VITTORIO FERRARI: APPROXIMATE GLOBAL SHAPE PRIORS 1

Learning to approximate global shape priors
for figure-ground segmentation

Daniel Kuettel ETH Zurich
dkuettel@vision.ee.ethz.ch
Vittorio Ferrari University of Edinburgh

vierrari@staffmail.ed.ac.uk

Abstract

We present a technique for approximate minimization of two-label energy functions
with higher-order or global potentials. Our method treats the energy function as a black-
box: it does not exploit knowledge of its form nor its order, as opposed to optimization
schemes specialized to a particular form. The key idea is to automatically learn a lower-
order approximation of the energy function, which can then be minimized used existing
efficient algorithms. We experimentally demonstrate our method for binary image seg-
mentation, where it enables to incorporate a global shape prior into traditional models
based on pairwise conditional random fields.

1 Introduction

Many problems in computer vision are formulated as minimizing the energy of a discrete
graphical model (e.g. a conditional random field [6, 20, 24, 25, 33]). This involves de-
signing an energy function to model the problem, and then minimizing it to find the lowest
energy labelling. A good function should give lower energy to labellings that solve the prob-
lem more accurately. In figure-ground segmentation, the energy favours spatially smooth
labellings that cover regions matching a certain appearance model [6, 18, 24, 25].

The energy minimization framework allows to cleanly separate modelling and inference.
It has enjoyed tremendous success in computer vision, and has been applied to various prob-
lems such as segmentation [25], stereo [27] and denoising [31]. However, it involves a
trade-off between expressiveness and optimizability. On the one hand we want sophisticated
energy functions which model the problem accurately. On the other hand, we want to find
the global optimum of the energy over all possible labellings of its variables. Unfortunately,
general efficient minimization algorithms only exist for restricted classes of energy func-
tions. A very popular such class are pairwise functions, involving only terms depending
either on one or two variables [0, 15, 16]. The optimization of higher-order functions is still
an open, highly challenging problem [2, 17, 19, 23, 26, 34].

It takes considerable effort to design an energy function that balances modelling accuracy
versus minimization feasibility. A recent trend is to design energies containing higher-order
potentials of a particular form, along with an optimizer specialized for that form [2, 11,
13, 17, 23, 26, 34]. The downside of this approach is that different optimizers needs to be
invented for each form of higher-order potential, which requires great skill and knowledge.

In this paper, we propose an alternative approach which does not require inventing spe-
cialized minimization algorithms. The designer only provides an arbitrary energy function
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unary attractive

=

repulsive

Input: regularizer (R,r)
Initialization: P=0,q=0
fork=1— K do
Xk <— new training sample
appearance model Xk < linearize xi as in eq. 14
P P+xixi |
q < q+xkEx
end for
output: ® « (R+2P)~'(2q—r)

—

(a) (b) ©
Figure 1: (a) Learned proxy for the full min-Chamfer prior. Top left: the unary potentials show the
mean shape of horses (darker = more foreground). Bottom left: Pairwise potentials (white = attractive,
black = repulsive). Inside and outside the horse body it clearly prefers that neighboring pixels take
the same label (attractive). Along the horse’s boundaries the potentials are repulsive. At the location
of the legs there is considerable uncertainty, as they are very variable in the training images. This
leaves room for the appearance model to precisely determine their location. (b) Appearance model for
a particular test image (darker = more foreground). (c) Algorithm to learn ®.

E that suits her problem. We make no assumption about the form of E nor about its order. It
can be arbitrarily complex and, in the extreme case, contain a global potential defined over
all variables. Our key idea is to automatically learn a pairwise function E, which tries to
approximate E as well as possible. After learning the parameters of this proxy function, it
can be efficiently minimized using standard algorithms for pairwise models [6, 15, 16].

We demonstrate our idea on binary image segmentation, where variables can take two
labels: foreground or background. Standard pairwise CRF models incorporate only a pref-
erence for smooth segmentations which align well with image gradients [6, 18, 24, 25].
Including a shape prior would require higher-order potentials to capture the complex sta-
tistical dependencies between pixels that characterize a shape class (e.g. horses). A desir-
able higher-order prior is the smallest Chamfer distance to a set of exemplars of the shape
class [8]. This min-Chamfer potential is global, as it can only be expressed exactly using a
function involving all variables (pixels).

When is our approach useful? On the one hand, it is general, as it can learn to approxi-
mate any binary energy function. On the other hand, as the modelling capacity of our proxy
is limited, the quality of the approximation degrades as the input function becomes more and
more complex. In the limit, a function of N binary variables can have up to 2" completely
unrelated outputs. Although our method would not be effective for such extremely irregular
functions, in practice many desirable higher-order energy functions are much more regular.
While these cannot be written exactly as pairwise functions, they could be approximated
well by our method. In this intermediate complexity regime our method is most useful. It
enables to employ desirable higher-order functions for which no exact efficient optimizer
exists. We demonstrate this advantage in our experiments by learning high quality proxies
for two variants of the popular min-Chamfer global shape prior [8, 29, 30] (sec. 4).

1.1 Related Work

Pairwise functions. Minimizing pairwise discrete energy functions has been thoroughly
researched and many efficient algorithms exist. Particularly relevant to our work are the
QPBO [16] and TRW-S [15] algorithms, which we use to minimize our proxy (sec. 3).

Higher-order functions. In the general case, minimizing energies containing higher-order
potentials defined over many variables is prohibitively expensive. However, there is a grow-
ing body of works tackling interesting special cases which can be optimized efficiently with
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Figure 2: min-Chamfer prior. Example shapes with increasing energy E.(x) for horses.
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dedicated algorithms.

The primal-dual technique of [2] can exactly minimize any binary (two-label) function
with 7 variables and k-th order submodular potentials in O(2%n®). While this is better than
the most general case, it is still exponential in k. Ramalingam et al. [23] present a technique
to transform certain submodular multi-label functions into binary submodular pairwise func-
tions which can then be minimized exactly using graph-cuts. However, the transformation
can be applied only to functions of order up to k = 4.

Several works appeared to deal with pattern potentials [12, 17, 26, 34]. These potentials
can act on rather large sets of variables, but they give the same (high) energy value to most
labellings. Only a small number of so-called pattern labellings can have their own (lower)
energy values. Typically these methods involve constructions growing roughly linearly with
the number of patterns. This is useful when there are much fewer patterns than the total
number of labellings (which grows exponentially with k). A famous example is the PN -Potts
potential of [12], which encourages local groups of pixels to take the same label. Particularly
related to our work are the potentials proposed by [17, 26], where example labellings of an
image patch are represented as patterns. However, as any non-pattern labelling gets the same
energy, it would need a prohibitively large number of patterns to encode a global shape prior.
In practice, the experiments in [26] are limited to 25 patterns on 10 x 10 patches.

Efficient algorithms have also been proposed for some specific forms of global poten-
tials. Co-occurrence potentials [9, 19, 34] encourage labellings containing certain desirable
combinations of labels (e.g. horse and grass). Connectivity priors [10, 33] encourage binary
segmentations where the foreground forms a single connected component. Recently [22]
proposed a construction to enhance a pairwise model to incorporate a preference for the
foreground area to be near a predefined size.

Figure-ground segmentation. Pairwise discrete energy functions are probably the most
popular way to model figure-ground segmentation in computer vision [18, 24, 25]. Most
approaches use only submodular potentials to encourage smoothness, while a few include
also non-submodular terms enforcing simple local shape models [1] and then minimize the
energy with QPBO [16]. In general, global shape priors are very difficult to plug into a
discrete energy formulation, which is more suited for local interactions. However, there
are works which model segmentation with global shape priors within continuous energy
minimization frameworks, achieving some success for certain kinds of priors [28].

Structured SVMs. As our method involves learning a pairwise discrete energy function
(proxy), it is related to structured SVMs [3, 32]. SSVMs find parameters so that the opti-
mal labelling has lower energy than any other labelling, by a margin proportional to their
difference (loss). Importantly, SSVMs involves minimizing the pairwise energy augmented
with the loss function, which is intractable for a complex loss such as min-Chamfer. More
generally, we want to tackle higher-order energies which cannot be minimized exactly with
existing methods. Trying to learn a proxy for such energies with SSVMs inevitably leads to
intractable loss-augmented proxies. As another difference, our method tries to approximate
the higher-order function over its entire domain, not just near the optimum. In principle, this
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enables to sample from the proxy, which is useful in importance sampling schemes, or as
part of a more complex learning algorithm.

2 Overview

Discrete higher-order energies. We consider a binary energy function E(x) defined over
a set of variables x = {x,x,...,xy}. Each variable can take a label in X = {0,1}. A
well designed E(x) assigns lower energies to labelings x € X'V that solve the problem more
accurately. Thus, the lowest energy labeling is returned as solution

X" = argxréljvrlNE(x) (1)

E(x) can be decomposed into a sum of potential functions defined on cliques (subsets) of
variables E(x) = Z v (xe) @)
ceC
where W, (x,) is a potential function on clique ¢ and x, = {x;,i € c}. C is the set of cliques.

Minimizing eq. (1) is in general NP-hard. However, pairwise energies (i.e. with cliques
of size up to 2) can be optimized efficiently with algorithms such as graph-cuts [6], QPBO
[16] and tree-reweighted message passing [15]. Higher-order potentials can express more
complex dependencies between variables. Without assumptions on the form of the higher-
order potentials, the complexity of minimization increases exponentially with the size of the
largest clique [4]. In the extreme case, it can have size N (global clique), i.e. the func-
tion cannot be decomposed into a sum over simpler clique potentials. Although the task is
daunting in the general case, several algorithms have been recently proposed to efficiently
minimize certain types of higher-order and global potentials (sec. 1.1).

Learning a pairwise approximation. In this paper we propose to automatically learn a
lower-order approximation £ (x) of the original energy function E(x). We make no assump-
tions about the form of E. It can be arbitrarily complex and could possibly contain a global
potential defined over all variables. The approximation E instead is limited to unary and
pairwise potentials (fig. 1(a)). It is learned to hold as well as possible over the entire domain
XN

E(x)=E(x), W¥xeXV 3)

The key advantage of learning a pairwise approximation £ is that it can be minimized effi-
ciently (sec. 3).

Segmentation with the min-Chamfer prior. We apply this idea to figure-ground seg-
mentation, where variables x; are pixels and the labels correspond to foreground (x; = 1) and
background (x; = 0). In this context, E(x) is a global shape prior giving lower energy to
segmentations X that fit a shape class such as horses or mugs. In our experiments we use the
smallest Chamfer distance to a set of exemplar shapes as E

. 1
F =g (ax L e g L it S>> @
where S is the set of exemplars, d is the Euclidean distance, and 0 denotes the outline of a
segmentation (i.e. the pixels at the boundary between foreground and background).

The Chamfer distance is normalized by the length of the outlines and it is symmetric over
the exemplars s and the input segmentation x. It has multiple equivalent minima, one at each
exemplar (E.(x) =0 V¥x € §) and it increases smoothly as x deviates from any exemplar
(fig. 2). It is a truly global potential, that can only be expressed exactly using all variables.
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In order to use the shape prior to segment a test image, we add a unary potential con-
taining an appearance model preferring image regions with a certain color distribution [25]
(fig. 1(b), sec. 4). Note how this does not change the difficulty of the optimization problem,
and therefore in the following sections we consider E as containing the shape prior only.

3 Learning the proxy £ (x)

Given an arbitrary energy function E(x), we want to find a function £(x) that approximates
it well and can be can be minimized efficiently. To be as general as possible, we do not make
assumptions about the form or the order of E (x), which could even contain a global potential.
We simply treat E(x) as a black box mapping a configuration x to an energy. Instead, we
constrain £ (x) to unary and pairwise potentials only. In the following we refer to E as the
proxy to the original energy E

N
E®)=yo+ Y wils)+ Y i) )
i=1 (i,j)eCs

where yp is a constant offset, y;(x;) is the unary potential for variable i, y;;(x;,x;) is the

pairwise potential for variables (i, j), and C; is a set of pairs defining which variables are
connected. We connect all neighbouring pixels and also connect a large number of distant
pixel pairs, in order to make the proxy capable of learning long-range dependencies. This
class of energy functions can be efficiently minimized using QPBO [16]. As the learned £
typically contains some non-submodular pairwise potentials, QPBO might leave some vari-
ables unlabelled. We label them in a second optimization pass using TRW-S [15]. However,
in all experiments in sec. 4, QPBO labelled all pixels.

The parameters ¥ of E include 1 value for vy, 2N values for y;(0) and w;(1), and 4|C;|
values for y;;(0,0), y;;(0,1), ;(1,0) and y;;(1, 1), for a total of 1 +2N +4|C,| parameters.
However, this is an overcomplete parameterization ([35], chapter 3.2). There exist a minimal
parameterization which can represent the same class of functions. In that parameterization,
v;(0),y;(0,0),y;;(0,1) and y;;(1,0) are all set to 0. This reduces eq. (5) to

N

Ex:®)=¢p+ ) dxi+ Y. ¢ijxix; ©)

i=1 (i,)€Ca

which is known as the Ising model ([35], section 3.3). Any energy function (5), specified
by 1+ 2N 4 4|Cy| parameters, can be transformed into an equivalent energy function (6),
specified by only 1 + N + |C;| parameters ([14], section 4.1). Therefore, the vector of N =
1+ N+ |C,| parameters

D= (9g,.... 0, 0ji,...) | 1<i<N (j,)eCa 7

completely determines £(x).

Our goal is to learn the parameters @ so that £ (x;®) = E(x) for Vx € XN, In principle,
with no assumption about the structure of E(x), we would have to evaluate every possible
labeling x € XN to do this. Unfortunately this is not feasible, as there are 2V different x.
We relax the problem by requiring E to approximate E on a very large subset of sample
labellings X = {x1,...,xx} C X" (typically millions). The underlying assumption is that E
varies smoothly over its domain X'V, and therefore the approximation is good also for most
other labelling. This is a weak assumption, as smoothness holds for most practical energy
functions. Thus we require

E(x; @)= E(x;), 1<k<K ®)
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We cast learning P as a least squares minimization problem
ming Y& (E(x;; D) —E(xk))2 €)
Furthermore, we add a regularization term R(®) on the parameters
. K =, 2
ming Y5, (E(x¢; @) —E(x¢))” +R(P) (10

The regularizer states a prior preference for a certain distribution of parameter values. In
our experiments we use the simple L2 regularizer (R(®) = Yy ca 02).

To summarize, learning £ (x) means finding the ® that leads to the best least-squares
approximation of the original energy on a sampled subset of labellings. The following sub-
sections will show how to solve the minimization in (10) efficiently in closed form (sec. 3.1
and 3.2), and how to best sample from X' to learn a good approximation (sec. 3.3).

3.1 Learning as quadratic form minimization

This section shows how to transform the objective function in (10) into a quadratic form,
which enables to solve the minimization exactly in closed form.
We assume that the regularizer R(®P) is already in quadratic form

R(®)=1o'RO+r'd (11)

This includes a wide variety of regularizers, including the L2 regularizer we use.
The sum of squared differences can be expressed as

di=d'1d (12)

o

i=1

with the column vector d = (dy,...,dx)" defined as d; := E (x;;®) — E(x;). We now show
how to rewrite each dj as a linear function of ®, making d"Id a quadratic form in ®. We
first note that E(x;) is simply evaluating the original energy function on a sample training
configuration x;. As this is independent of P, it is a constant in the minimization problem.
We denote those constants with Ey. Instead, the proxy energy E (x;;®) depends on both the
parameters ¢ and a sample x;. We construct a linearized Xy, so that

E(xp; @) =%, ® (13)

The linearized X;, is a binary vector that selects which potentials are active among all those
in @, according to the configuration x;. We show below both X; and ® side-by-side to clarify
their relation

(D:(¢07"'7 (Pi PIERRIE] ¢]l 7'“)T
. T
Xe=(1 0 Xy oo s XpXag 5 )

By inserting the linearization of eq. (13) into the sum of squared differences of eq. (12)

14)

d'ld=X"®-E)'IX'®-E)=®'XX'®-2E'X"®+E'E (15)

where X contains X; as columns, and E = (Ej,... ,EK)T. With the reformulations above,
the minimization problem (10) can be written as minimizing a quadratic form over

ming 1@ (R+2XX")d+(r' —2E'X")® (16)
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In general, any quadratic form %yTHy +f'y can be minimized by y = —2H"'f, if H is
positive-definite. Therefore, we can solve our minimization problem in closed form by

®=(R+2XX")"'2XE —r) (17)

when R +2XX " is positive-definite. The symmetric matrix XX ' is always positive-semi-
definite. Given > N training samples, it is also full rank and therefore positive-definite.
Moreover, note how the regularizer R is positive-definite by construction. If given enough
weight, it can make R 4 2XX " positive-definite even without enough training samples.

3.2 Efficiently setting up the quadratic form

In order to learn a good approximation E(x;®) = E(x), we need many training samples x,
typically millions. Unfortunately, the matrix X is of size N x K, i.e. it grows with the number
K of training samples. For a typical segmentation problem, K ~ 107 and N =~ 10*. Hence, X
takes about 100 GBs and does not fit in memory.

However, X is not necessary on its own. It only appears in the terms XX ', which has
size N x N, and XE, which has size N x 1. Hence, the size of both terms involving X does
not depend on the number of training samples K.

We show here how to incrementally compute XX and XE, one training sample at a
time. In this fashion we never need to handle the full X. We rewrite XX " as

K
XXT=[x ... % .. ox[% .ox %] =Y a (18)
k=1

and analogously XE = Zszl X;Ey. Therefore, both terms can be computed as a sum over

individual training samples. This idea enables to learn ® very efficiently. Fig. 1(c) shows
the algorithm. To keep the notation clean, we use P := XX and q := XE, as they are
incrementally built during its execution.

The largest matrix involved in this algorithm is N x N, instead of N x K. For good results,
the number K of training samples needs to be much larger than the number N of parameters.
Hence, the algorithm requires much less memory than a direct implementation of learning
as in eq. (17). The algorithm also offers a considerable speed up in runtime because it avoids
computing the large matrix multiplication XX . The runtime for computing P and q is
O(KN?), compared to O(K>N) for directly computing XX . Finally, note how inverting
R + 2P takes O(N*37%). However, since K > N, O(N*373) < O(N*) < O(KN?). Hence, the
runtime of learning is dominated by the cost of constructing R + 2P and not by its inversion.

3.3 Training samples

As XV is huge, we need many training samples for accurate training. Training with only
random samples is not recommended as they typically all have high energy. For the proxy
to learn about regions of XN with low energy, it is important to include many such samples
as well. In our experiments we generate 50% purely random samples and 50% low energy
samples. For the min-Chamfer prior, we generate low energy samples by first drawing a
random exemplar shape s € S, and then adding small random perturbations to it (fig. 2).

4 Experiments and conclusions

We conduct experiments on the Weizmann Horses dataset [5], which contains 327 images
of horses along with ground-truth segmentations. We divide them into 228 for training the


Citation
Citation
{Borenstein and Ullman} 2004


8 DANIEL KUETTEL, VITTORIO FERRARI: APPROXIMATE GLOBAL SHAPE PRIORS

(@ (b)
Figure 3: (a) Compares the exact solution of the energy of the model E'¢*' based on the unnormalized
asymmetric min-Chamfer versus the solution of our the corresponding energy E'¢*" based on our proxy.
They are very close. (b) Compares the solution when using only the appearance terms E, versus
using the complete model E'*" containing also our full min-Chamfer proxy. The latter leads to better
segmentations.

shape prior proxy and 90 for segmenting horses in new test images. The remaining 9 images
are used to set a hyper-parameter A (see sec. 4.2). Before all experiments we crop the
images to a rectangle around the horse based on the ground-truth segmentation. To reduce
the number of pixels, we partition each image into superpixels using [21]. These preserve
object boundaries and give only about 1000 superpixel per image. In subsection 4.1 we
evaluate the quality of the learned prior proxy on its own, and then in subsection 4.2 we use
it in conjunction with an appearance model to segment new test images.

4.1 Quality of the learned prior proxy alone

In this experiment we learn a proxy E, for the min-Chamfer shape prior E. of eq. (4) using
our method of sec. 3. The 228 ground-truth segmentations in the training set form the set S.
We generate 5 x 10° training samples derived from S (sec. 3.3). Training takes about 350h
on a 2.6GHz CPU, most of which is spent computing the energies of the training samples.

Neighbor connections only. In a first experiment we connect all neighboring superpixels
in the proxy model. This results in 1469 parameters for the unary potentials and 4309 for
the pairwise potentials. To evaluate how well the learned proxy E. approximates the min-
Chamfer prior E,., we generate a second, disjoint set of K =2 x 10° samples from S (as
the prior is defined by S, eq. 4). We quantify the approximation error as the square-root
of the mean squared difference between E. and E, on these samples. The approximation
error is 5.6 - 1074, which is two orders of magnitudes smaller than the difference between
the average energy of the good low-energy samples and the bad high energy ones (0.1-1072,
sec. 3.3). This shows that the learned proxy approximates well the min-Chamfer prior. Note
the importance of the training samples: when training with only random samples or only
good low-energy samples the error increases to 2.5- 1073 or 1.1- 1073, respectively.

Adding distant connections. The approximation quality can be improved by adding more
pairwise connections to the proxy E,. This increases its capacity, enabling it to better approx-
imate complex energies. To confirm this experimentally, we added 5000 randomly sampled
connections between distant superpixels. The approximation error decreased to 5.2- 1074

4.2 Segmenting new test images

Appearance model. After learning the proxy prior E,., we use it to help segmenting a new
test image /. We combine the prior with the appearance model of [25], i.e. a GMM over
RGB space (fig. 1(b)). The appearance model is estimated from a rectangle centered in / and
covering 50% of it (as done in [18, 25]). This gives an energy function E,(x;I) with only
unary terms based on the appearance of superpixels in /. The overall energy function we use
to segment / is then

E'!(x;1) = Eq(x;1) + AE.(x) (19)
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Figure 4: Examples segmentations using the model E'*" based on our full min-Chamfer proxy.

where A is the weight of the shape prior. We choose A so that minimizing eq. (19) leads

to the best segmentation accuracy on a held-out validation set of 9 images (not used for the
shape prior). Segmentation accuracy is measured by the percentage of pixels labeled as in
the ground-truth.

Results: unnormalized asymmetric min-Chamfer. We evaluate how well the model (19)
approximates the model using the true prior E!*" = E,(x;1) + AE.(X). More precisely: How
close is the labelling returned by minimizing E/¢*' to the true global optimum of E'¢'? We
cannot answer this question exactly for the min-Chamfer prior E,, as exact minimization
is prohibitively time consuming. Indeed, this fact is the basic motivation for this paper.
Instead, we first report experiments on a simplified version E,, of min-Chamfer, which is not
symmetric and not normalized by outline length

E,(x) = min ( Z mind(x, s)) (20)

seS cox s€ds

As shown by [7], with a single exemplar, E'**' (x,1) = E,(x|I) + AE,(x) can be represented

using unary and (submodular) pairwise potentials. Thus it can be minimized exactly. We
extend this idea to an arbitrary number of exemplars by solving the minimization for each
exemplar separately, and then returning the lowest energy solution. This corresponds to
explicitly looping over the first min in (20). Although exact, this procedure is extremely
slow, as there are > 200 exemplars in S. We learn a proxy prior E, to approximate E,
using the same procedure as in sec. 4.1. For a test image I, we very efficiently minimize the
proxy test energy £ (x;I) = E,(x;I) + AE,(x), obtaining a labelling X*. We also compute
the globally optimal labelling x* of the original test energy E'*, using the slow procedure
above. We now quantify how well our procedure approximates the true global optimum by
comparing the energy of X* to that of x* under the exact model E/#'. On average over the 90
test images, the ratio E'*' (%*,1) /E'¢*' (x*,I) is 1.3. Hence, our approximate solution is close
to the global optimum (fig. 3(a)).

Another relevant question is whether using the shape prior improves the accuracy of the
output segmentations. We evaluate segmentation accuracy averaged over the 90 test images.
Using only the appearance term E,, the accuracy is 76.2%. Incorporating the proxy prior,
i.e. minimizing £, improves results considerably to 83.0%. Moreover, this is very similar
to the accuracy produced by minimizing E'¢*' (82.7%). This brings further evidence that our
proxy-based inference scheme accurately approximates the behavior of E/f, i.e. the original
segmentation energy using both the appearance term and the exact unnormalized asymmetric
min-Chamfer shape prior. Note how our proxy-based inference scheme is ~ 200 faster than
the exact minimization of E'*" as it only requires minimizing a single pairwise energy (no
loop over exemplars).

Results: full min-Chamfer. As it is not possible to exactly minimize the test energy
E''(x;1) = E4(x;1) + AE.(x), for comparison we implemented a slow minimization base-
line, which evaluates E'* on 2.5 - 10° random perturbations of the exemplars and selects the
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one with the minimum energy. On average over the 90 test images, the ratio of the energy
of the solution output by minimizing our proxy-based energy £ (x;I) = E,(x;I) + AE.(x)
to the baseline solution is 1.58. Importantly, the baseline is more than 1000x slower than
our technique. Hence, assuming this semi-exhaustive baseline reaches an energy close to
the global optimum, we conclude that our proxy-based approximate optimization scheme is
very effective.

In terms of segmentation accuracy, minimizing our energy E."“" based on the full min-
Chamfer proxy prior leads to 86.8%, which is a further improvement over using the unnor-
malized asymmetric min-Chamfer prior (82.7%). This is because the unnormalized asym-
metric min-Chamfer prior has the drawback of preferring short outlines dx (a segmentation
with no foreground has distance O to any exemplar). Hence, the normalized symmetric min-
Chamfer distance (4) is more desirable [8, 29]. Fig. 1(a) shows the learned proxy and fig. 3(b)
shows the improvement by our full min-Chamfer proxy over appearance alone.

4.3 Conclusion

We presented an approach to approximately minimize arbitrary binary energy functions. It
bridges the gap between accurate modelling and ease of optimization in a principled way. It
combines the convenience of modelling using a complex energy function, with the compu-
tational benefits of using a pairwise model.
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