
Combining Image-level and Segment-level Models for
Automatic Annotation

Daniel Kuettel, Matthieu Guillaumin, and Vittorio Ferrari

Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract. For the task of assigning labels to an image to summarize its con-
tents, many early attempts use segment-level information and try to determine
which parts of the images correspond to which labels. Best performing meth-
ods use global image similarity and nearest neighbor techniques to transfer labels
from training images to test images. However, global methods cannot localize the
labels in the images, unlike segment-level methods. Also, they cannot take advan-
tage of training images that are only locally similar to a test image. We propose
several ways to combine recent image-level and segment-level techniques to pre-
dict both image and segment labels jointly. We cast our experimental study in an
unified framework for both image-level and segment-level annotation tasks. On
three challenging datasets, our joint prediction of image and segment labels out-
performs either prediction alone on both tasks. This confirms that the two levels
offer complementary information.

Keywords: image auto-annotation, image region labelling, keyword-based im-
age retrieval

1 Introduction

In recent years, automatic image annotation has received increasing attention [11, 13,
17, 18]. In its basic version, which we call image-level annotation, the task is to assign
a few semantic labels to a test image, roughly describing its contents (fig. 1(a)). In
its elaborate version, which we call segment-level annotation, the semantic labels are
assigned to every segment in the image (fig. 1(a)4). The union over the segment labels
is then proposed as image labels [2, 4, 7].

Segment-level annotation poses additional challenges compared to image-level an-
notation. First, labels for the segments in the training images are not given, and must be
estimated from the image labels. As a consequence, segment-levels methods need to be
robust to errors in this estimation. Second, appearance features extracted from segments
are less distinctive than global image features, which incorporate contextual layout in-
formation. Finally, even with perfect segment labels, their union does not always match
user-provided image labels, since the latter focus on the salient objects in the image.
Overall, segment-level annotation is a much more difficult task, which explains why
recent global methods outperform local ones for image-level annotation.

On the other hand, global methods cannot localize labels in the test images, but
merely indicate their presence (fig. 1(a)3). This limits the interpretability of the different
methods and reduces the spectrum of possible applications of the output predictions:
image labels are restricted to classification and indexing purposes. With localized labels
instead, it is possible to visualize the learned concepts and identify their spatial extent in
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Fig. 1. Left (a): A test image (1) of a bear out of its typical context in the wild (2), highlighting
the need for compositionality. On the other hand, context is a powerful force for recognizing cars
in typical images such as (3). (4) shows a localization of the labels in (3). Right (b): Summary of
image annotation models. For each arrow there are several applicable models. Alternatives are
discussed in the respective sections. For E and F, we present novel methods to combine segment
and image-level models.

the images. Therefore, segment labels can be used to train object detectors or compute
class-specific features invariant to position and scale. Overall, they provide a deeper
understanding of an image.

Our work builds on the observation that image-level and segment-level techniques
have several complementary strengths. Segment-level methods explicitly attempt to de-
termine which parts of the training images belong to each label. This is typically done
by describing the local appearance of segments and then searching for recurrences over
the training set with a probabilistic model [2, 3, 5, 9, 19]. Segment-level methods can
recognize the presence of a class in a test image even if it appears in a context not ob-
served during training (e.g. a bear in a cage while training images show bears in the
wild, fig. 1(a)1+2). This compositional character is a strength of segment-level meth-
ods and endows them with great generalization potential. On the other hand, the global
image layout is more characteristic than the appearance of individual segments, as it
indicates certain combinations of labels (cars-roads in fig. 1(a)3). Recent image-level
methods [17, 25] employ global image similarities and predict labels for a test image
based on the labels of its most similar training images. Those methods perform better
on the image-level annotation task [1, 11], as they better exploit the large number of
available images annotated by keywords.

The observations above suggest that segment-level prediction is a task of its own,
which should be evaluated on a per-pixel basis, and that combining segment-level and
image-level predictions may help both tasks. The potential for interaction between the
two levels is largely unexplored and very promising. Image labels help reduce the space
of possible segment-level annotations. On the other hand, even imperfect segment labels
carry valuable complementary information about image content.

In this paper we explore the combination of image and segment levels and make
the following contributions: (i) we present a unified view of existing methods as pro-
cessing stages in a generic scheme (sec. 2); (ii) we propose new alternative models to
perform many of the stages (sec. 3 to 6); (iii) we propose novel joint models to com-
bine the predictions from image and segment levels (sec. 7). In sec. 8 we present the
datasets and features we used. Through extensive experiments, we demonstrate that our
combined models perform better at both segment-level and image-level annotation than
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either component alone (sec. 9). We conclude and draw directions for future research
in sec. 10.

Related works. Our work relates to the numerous segment-level and image-level meth-
ods discussed above, as we seek to combine the two strands.

Some earlier works tried to incorporate context in segment-level methods, e.g. by
modeling co-occurence of labels [6] or their spatial relationships [23]. However, these
methods typically do not use global image predictions. Most importantly, their train-
ing scenarios are radically different from ours, where ground-truth segment labels are
available at training time. Therefore, they address a different task, known as semantic
segmentation in the literature [14, 20], which can be seen as the fully supervised version
of segment-level annotation.

Note how several earlier methods proposed for image label prediction actually per-
form segment-level annotation. Early methods based on probabilistic models [2, 5, 19]
describe the image as an orderless bag of segments. Non-parametric mixture models
like multiple bernoulli relevance models [9] also rely on image regions.

2 Models Overview
Before investigating ways to combine segment-level and image-level information, we
present a unified view which incorporates most previous works. Fig. 1(b) shows the two
main existing ways to obtain predictions on a test image using image-level (arrow A)
or segment-level methods (sequence of arrows B-C-D). Image-level methods [1, 11, 17,
25] directly transfer labels from training images to test images using global image simi-
larities (A). Segment-level methods [2–5, 9, 19] first estimate labels for the segments in
the training images (B), then transfer them to the segments in the test image (C). Finally,
they derive a prediction of image labels from these predicted segment labels (D).

In the following sections, we first present various alternatives for the components in
fig. 1(b) (arrows), including new ones that we propose. We then present novel methods
to combine segment and image-level models in sec. 7 (stages E and F) .

3 Image Label Transfer (A)
Transferring labels from training images to test images is the most direct way to predict
image labels. This strategy has recently been shown to be very successful [1, 11, 17].

Formally, let I be the set of N training images Ii. The dictionary D is the set of
unique labels in the annotations of the training images. There are V labels in D and
we refer to them by their id l ∈ {1..V }. Each training image is annotated with labels
from D. We summarize the annotation as Ll, which is an indicator function for label l.
If image Ii is annotated with label l, then Ll(Ii) = 1, and 0 otherwise.

Here, we focus on the recent, state-of-the-art TagProp [11]. which transfers la-
bels using a weighted nearest neighbor approach, but other works fall in this category
(A) [17, 25].

3.1 TagProp
The label prediction Ll(Y ) for a test image Y is based on a weighted sum over the
training images:

tagpropl(Y ) = p(Ll(Y )|I) =
N∑
i=1

πyip(Ll(Ii)) (1)
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Where p(Ll(Ii)) = 1 − ε for Ll(Ii) = 1, ε otherwise. In [11] several variants
for πyi are presented. We summarize here the best performing variant, which produces
state-of-the-art results. Specifically, the weights πyi are

πyi =
exp (−dw(Y,Ii))∑
j exp(−dw(Y,Ij))

with dw(Y, i) = wTdyi (2)

where dyi is a vector of base distances between Y and Ii. A separate base distance
is computed for each type of image feature and w is a vector of positive coefficients for
combining these distances. This variant is called ML, for metric learning, because w is
learned so as to maximize the log-likelihood L of the leave-one-out predictions on the
training set

L =
∑
i,l

cil ln p(Ll(Ii)|I\Ii) (3)

where I\Ii is the set of training images without Ii, and cil is a reweighting parame-
ter for labels. It gives more weight to present labels than to absent ones since the absence
of labels in the annotation is less reliable information [11]. As the log-likelihood (3) is
concave, we maximize it using a projected-gradient algorithm. The first derivative of
eq. (3) with respect to w is

δL
δw =

∑
i,jWi(πij − ρij)dij with ρij =

∑
l
ciw
Wi
p(Ll(Ij)|Ll(Ii)) (4)

This learning step was shown by [11] to outperform earlier, ad-hoc ways to transfer
labels from image neighbors [17]. Note that, in order to keep learning efficient, the
dyi are only computed for the K nearest neighbors (typically 200) of Y in I. We set
πyi = 0 for all others.

Weighted nearest neighbor models tend to have low recall, since rare labels are un-
likely to appear in many neighbor images. Therefore, [11] further adds a word-specific
logistic discriminant model to boost the probability for rare labels:

p(Ll(Y )|I) = σ(αlxyl + βl) with σ(z) = (1 + exp(−z))−1 (5)

xyl =

N∑
i

πyip(Ll(Ii)) (6)

The parameters (αl, βl) and w are learned in alternating fashion to maximize eq. (3).
See [11] for details.

4 Segment Label Estimation (B)
We discuss here models to estimate segment labels from image labels during training
(fig. 1(b), arrow B). This stage is necessary since only ground-truth image labels are
available for training. Estimating segment labels from image labels can be seen under
different points of view: as a Multiple Instance Learning problem [12] where an image
forms a bag of instances (segments); as a constrained clustering problem [7]; or the
missing segment labels can be recovered by MRFs [21]. The same task is also referred
to as the Label-to-Region problem by a few authors [16].

Formally, the task is to estimate the labels of every segment s ∈ Si in every training
image Ii, guided by the given image labels Ll(Ii). This involves estimating the proba-
bility p(Ll(s)|{Si}, I) of Ll(s) = 1 for every label l and segment s in every image i.
We present below three alternative approaches for this task (either one can be used).
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4.1 Label Copy
As a straightforward approach, labels can be simply copied from an image to its seg-
ments. In this case, all segments in an image are assigned the same labels. We obtain
the following expression for the segment labels

p(Ll(s)|{Si}, I) = Ll(Ii). (7)

This is a conservative approach. It contains noise for the presence of a label, but
almost none for the absence of a label. Some methods for segment label transfer (C) are
very robust to label presence noise and perform surprisingly well with label copy.

4.2 Token Model
This model represents segments by visual words as in [7]. AllNs segments are collected
in the set S = ∪iSi. We describe the appearance of each segment sj ∈ S with a feature
vector fj (sec. 9) and then apply k-means to all vectors to obtain Q cluster centers
cq . Each cq is a visual word and C = ∪qcq is the codebook of visual words. We now
assign each segment sj to its closest cluster center cq and denote the id q as the token
T (sj) of sj . The Token Model represents segments solely by their token. This turns the
estimation of p(Ll(s)|{Si}, I) into

p(Ll(s)|{Si}, I) = p(Ll(T (s))|{T (Sj)}, I). (8)

Representing a segment as a token rather than a feature vector is beneficial because
tokens are discrete and finite, whereas feature vectors live in a continuous and typically
high-dimensional space. Therefore, estimating (8) is easier than estimating the distribu-
tion p(Ll(s)|{Si}, I) directly.

In the spirit of [7], we adopt a simple clustering approach, which assigns exactly
one label zij to each segment sij of image Ii

Ll(sij) =

{
1 if l = zij
0 otherwise. (9)

From a given segment-label assignment z we derive the empirical label-token dis-
tribution

p(Ll(t)|t, z) = Z

T (sij)=t∑
ij

Ll(sij), (10)

where Z is the normalization factor and t is a token.
To learn the labeling we use an EM-like scheme. We initialize zij with a random

label of image Ii. In the first step, the probability in eq. (10) is estimated using the
last assignments zij . In the second step, zij are estimated using eq. (10) (keeping them
restricted to the labels Ll(Ii) of the ground-truth image labels). The steps are repeated
until convergence.

4.3 Label-to-Region (LTR)
This is the approach described in the recent work of [16]. It consists of two stages. First,
corresponding segments between image with common labels are found. Second, labels
are assigned to segments based on these correspondences.

In the first stage, a segment s in an image Ii is approximated in the feature space
as a sparse linear combination of segments s′ ∈ S ′ in other images I\Ii sharing at
least one label. Then, labels are transferred to s from S ′ according to the sparse linear



6 Combining Image-level and Segment-level Models for Automatic Annotation

bear
snow

snow

water

tree tree

tree tree

bear, snow

tree, water, sky
sky

(a)

test image

training images

prediction

training segments

(b)
Fig. 2. Left (a): Example segment label estimations on two training images (ground-truth anno-
tated only at the image level). Right (b): The Global Segprop model. The prediction for a test
image (top) is a mixture over the nearest neighbors of the image’s segments (center, shown with
lines) in the training set (bottom). For clarity, only the first nearest neighbor n1 of each segment
is shown.
combination. This scheme is repeated for all segments until convergence. The initial
labels for the segments are copied from the image, as in Label Copy (sec. 4.1). For each
segment, this stage returns a probability vector over labels (multinomial distribution).

In the second stage, labels are assigned to segments. For each image, the probability
vectors of the segments are clustered into as many clusters as there are labels for the
image. The resulting clusters are then labeled with the most likely label according to
the centroid. Finally, each segment is given the label of the its cluster.

5 Segment Label Transfer (C)
We present here two alternatives for transferring labels from training segments to seg-
ments in a test image Y . While this is not as direct as image-level predictions (A), it
is more flexible as it can explain the test image as a combination of segments not ob-
served during training. At this stage, segment labels on the training set have already
been derived from ground-truth image labels (B). Throughout this section, S is the set
of segments si in the training set.
5.1 Token Model
The Token Model trained in (B) is directly applicable to test images. We apply to each
test image segment y the quantization procedure described in sec. 4.2 and obtain its
token t=T (y). Then, the multinomial distribution p(Ll(t)|t) in (10) is used to predict
the label of y

tokenmodell(y) = p(Ll(t)|t) ∝
T (s)=t∑
s∈S

Ll(s). (11)

For any given token, this is the vector of frequencies of estimated segment labels in
the training set.

5.2 SegProp
As a novel alternative to the Token Model, we propose here an approach analog to
TagProp (sec. 3) to transfer labels from training segments to test segments. We refer to
it as SegProp, for Segment-level Propagation. The output of SegProp for label l for a
test image segment y is

segpropl(y) = p(Ll(y)|S) =
Ns∑
i=1

πyip(Ll(si)), (12)
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where pk(Ll(s)) = 1 − ε for Ll(s) = 1, ε otherwise. Therefore, the label prediction
of a segment is a weighted sum over the training segments si. As in sec. 3, we restrict
ourselves to the K nearest neighbors, set πyi = 0 for all others, and use the same
projected-gradient method to learn this model. Note that, for a test segment y, SegProp
outputs a vector of probabilities with one entry per label (e.g. [p(L1(y)) . . . p(LV (y))]).

6 Image Labels from Segment Predictions (D)
The last stage of predicting image labels using segments is to transfer labels to the
image from the predicted labels of its segments. When each segment label is predicted
as a multinomial or multiple Bernoulli distributions, it is natural to combine them, for
instance using a mixture model. We detail two alternatives below. Let Y denote a test
image and {yr} the set of its segments.

6.1 Maximum Prediction
In this approach, we combine segment-level predictions into an image-level one by
keeping, for each label, the largest prediction over the segments. This procedure takes
advantage of the compositionality of segments. If two regions are predicted to have
different labels, it indeed transfers both labels to the image. Formally, we define:

p(Ll(Y )|{yr}) = max
r
p(Ll(yr)). (13)

6.2 Global SegProp
Instead of considering each segment to have the same importance in the final prediction,
an alternative is to use a mixture over the segments. This is the base of our new Global
SegProp model. Specifically, Global SegProp outputs an image-level prediction as a
mixture of the labels of the training neighbors of its R largest segments {yr} (largest
area relative to image):

p(Ll(Y )|{yr}) =
Ns∑
i=1

πyip(Ll(si)) (14)

Where p(Ll(s)) = 1 − ε for Ll(s) = 1, ε otherwise. The components for dyi (see
eq. (2)) are the feature space distances for segment si to the R largest segments {yr}.
As before, we compute the K nearest neighbors for every of the R largest segments,
take the union set, and set πyi = 0 for segments not in this set.

Importantly, the weights are now optimized for image-label prediction during train-
ing, whereas SegProp optimizes them for segment-label prediction. Hence, this model
perform stages (C) and (D) jointly (fig. 2(b)).

7 Joint Label Prediction
In this section we propose several models for combining the image and segment levels
for predicting labels of a test image Y . This is desirable as the information that the
two levels offer is orthogonal. The global, image-level models are more distinctive be-
cause they capture context. The local, segment-level models are more flexible thanks to
compositionality. Moreover, they can annotate the test image at the segment level. By
doing the prediction jointly, we can hope to bring some contextual information into the
segment-level predictions as well as improving image annotation by exploiting compo-
sitionality.

We devise three alternatives to combine TagProp (A) with segment-level predictions
(C), for achieving both segment-level prediction (E) and image-level prediction (F). The
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Table 1. Summary of pixel annotation results on the MSRC-21 dataset.

Name (Parameters) A B C E Overall acc.
Token Model (Q=2300) - Token Token - 24.4%
SegProp (Q=2300,K=50) - Token SegProp - 25.6%
SegProp (K=50) - LTR SegProp - 29.6%
SegProp (K=50) - Copy SegProp - 31.4%
TagProp+Token TagProp Token Token Prod. 27.8%
TagProp+SegProp TagProp Copy SegProp Prod. 33.8%

first two are rather simple and based on multiplying the output probabilities (sec. 7.1
and 7.2). Last, we propose a more complex one, based on combining neighborhoods of
image-level and segment-level models (sec. 7.3).

7.1 Joint Segment-level Prediction by Product (E)
In this joint model, the image-level prediction acts as a prior to guide the segment-level
prediction. To include the prediction for image Y to predict its segment yi, we compute
p(Ll(yi)|Y ) as:

p(Ll(yi)|Y ) = p(Ll(Y ))p(Ll(yi)), (15)
where p(Ll(Y )) is the output of any image-level method (A), and p(Ll(yi)) of any

segment-level prediction (C).
For (A), we have only considered TagProp, so p(Ll(Y )) = tagpropl(Y ). For (C),

p(Ll(yi)) can be set to either tokenmodell(yi) or segpropl(yi) (sec. 5), leading to com-
binations that we refer to as “TagProp×Token” and “TagProp×SegProp”.

7.2 Joint Image-level Prediction by Product (F)
In order to achieve the effect of improving image-level prediction using segment-level
prediction, we propose to combine the output of any image-level method (A) with the
image-level prediction (D) corresponding to a segment-level method (C):

p(Ll(Y )|{yi}, Y ) = p(Ll(Y )|Y )p(Ll(Y )|{yr}). (16)

Again, TagProp will be used for p(Ll(Y )|Y ), while p(Ll(Y )|{yr}) can be obtained
by Maximum Prediction (D) from any segment-level method, or by using Global Seg-
Prop (sec. 6.2). As in the previous section, we refer to these as “TagProp×Token” and
“TagProp×SegProp”.

7.3 Tagprop + Global SegProp (F)
We propose a novel and more elaborate technique to predict image labels by combining
image-level and segment-level information. We include both segment neighbors (as in
Global Segprop) and image neighbors (as in Tagprop)

p(Ll(Y )|{yr}, I)=
Ns∑
i

πsyip(Ll(si)) +

N∑
i

πIyip(Ll(Ii)) (17)

Note that there are two sets of weights, πS for segment neighbors, and πI for image
neighbors. By fixing one set of weights, we can maximize the log-likelihood over the
other set as done for eq. (3). So, we learn both sets in alternation. As done in sec. 3.1, for
efficient learning we only consider the K nearest neighbors of Y for image neighbors.
For segment neighbors, we include the T nearest neighbors for each of theR top largest
segments in Y . In total, there are K + RT neighbors. We set to 0 the π weights for
training images/segments not in this set.
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8 Data Sets and Features
In this section, we describe the datasets we experiment on, and the image/segment fea-
tures we use. Note that to properly evaluate our approaches on segment-level annotation
from image labels, datasets with ground-truth pixel annotation are required (MSRC-21,
SIFT-Flow).

The MSRC-211 dataset contains 591 images of 23 object classes, annotated at the
pixel level. We adopt the evaluation protocol of [21] and keep the 21 most frequent
classes and void, leaving horses and mountain out. As in [21, 24], we use a random
selection of 531 images for training and the other 60 for testing.

The SIFT-Flow2 dataset [15] contains 2688 images with a total of 33 objects and
background classes annotated at the pixel level (sky, sea, etc.). We use the training and
test subsets defined in [15], with 200 images for testing and the rest for training.

The Corel 5k3 dataset [7] is commonly used for image auto-annotation. It comes
with pre-defined training and test images that have been manually labeled with at most
5 keywords out of a vocabulary of 260. The training set consists of 4500 images while
the test set has 499 images, which we use to evaluate image-level prediction. There is
no pixel-level annotation for this dataset.

To describe images globally, we adopt the features of [11]. They consist of GIST,
color histograms (RGB, LAB, HSV) with 16 bins per channel, and bag-of-features his-
tograms. For the latter, SIFT and Hue [22] descriptors are computed on a multiscale grid
of points and at Harris interest points. These descriptors are quantized using K-means
with 1000 centroids for SIFT and 100 for Hue. Additionally, histograms over three hor-
izontal regions are also computed for all descriptors except for GIST. This results in 15
different descriptors. For the base distances, we use L2 for GIST, L1 for color, χ2 for
bag-of-features.

For segments, we adapt the descriptors described above. First, color histograms
are computed with only 12 bins per channel to reduce the dimensionality. Quantized
local descriptors are accumulated in individual histograms of segments based on the
location of the interest points. In total, there are 7 descriptors. The base distances are
computed analog to the image-level case. For the Token Model, we have reimplemented
the segment features of [2]: relative size and position in the image, average and standard
deviation of pixel RGB and LAB, and shape features such as ratio of area to perimeter,
eccentricity and ratio of area to convex hull. Here, L2 is used as a distance measure.
Our segments are computed using [8].

9 Experimental Evaluation
We present here the experimental protocols and our results for both segment and image
label prediction tasks.

Segment-level prediction. Segment-level prediction is evaluated using a standard mea-
sure for semantic segmentation [15, 20, 21]: the percentage of correctly predicted pixels
over all pixels (overall pixel accuracy).

1 http://research.microsoft.com/en-us/projects/
objectclassrecognition/

2 http://people.csail.mit.edu/celiu/CVPR2009/
3 http://kobus.ca/research/data/eccv_2002/
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Table 2. Pixel annotation results on the SIFT-Flow dataset.

Name (Parameters) Overall acc.
Token Model (Q=2300) 18.5%
SegProp (K=50) 34.2%
TagProp+Token 31.1%
TagProp+SegProp 35.9%

Table 3. Image annotation results on the Corel5k dataset. TagProp is abbreviated as TP and
SegProp as SP.

Name (Parameters) A B C D E BEP
Token Model (Q=2300) - Token Token Max. - 8.2%
SP (Q=2300,K=50) - Token SP Max. - 11.2%
SP (K=50) - Copy SP Max. - 14.9%
Global SP (R=10,K=5) - Copy Global SP - 19.8%
TP (K=200) TP - - - - 36.2%
TP+Token TP Token Token Max. Prod. 22.2%
TP+SP TP Copy SP Max. Prod. 27.9%
TP+Global SP (K=200, R=10, T =5) - Copy - - TP+G SP 37.0%

In tab. 1, we summarize the different methods that we compare for segment-level
annotation on the MSRC-21 dataset. The Token Model achieves an overall accuracy of
24.4%. Our proposed SegProp model performs considerably better, reaching 29.6% in
conjunction with LTR for stage B, and 31.4% with the simple label copy mechanism
for stage B. As SegProp is very robust to the presence of label noise, it performs well
in conjuction with label copy.

More importantly, when combining the segment-level predictions with image-level
predictions from TagProp, we obtain significant improvements: +2.2% for SegProp and
+3.4% for the Token Model. The larger improvement for the Token Model can be ex-
plained by the higher complementarity of the methods and features, compared to Seg-
Prop. Our TagProp+SegProp combination achieves the best overall accuracy of 33.8%.

In tab. 2, we give the accuracy on the SIFT-Flow dataset. The same conclusions can
be drawn: SegProp is superior to the Token Model for segment-level annotation, and
the combination with TagProp improves both models. In fig. 3, we illustrate the benefit
of using image-level prediction to guide segment-level prediction.

Note that several works [15, 20] report higher scores than ours for both datasets.
However, they operate in the fully supervised scenario, i.e. using ground-truth pixel
labels for training, whereas we use only image labels. Those methods are able to train
strong appearance classifiers, and can leverage position and smoothness priors.

Image-level prediction. Following previous works [10, 11], we measure the Break-Even
Point score (BEP). To compute the BEP, first the images are ordered by the predicted
probability for a label l. This list is truncated to the length of the true number of rele-
vant images (using ground-truth). The BEP measures the percentage of relevant images
in this truncated list, averaged over all labels l = 1 . . . V . Some works [7, 11, 17] ad-
ditionally measure precision/recall after assigning the 5 highest-scoring labels to each
test image. However, as many test images have fewer than 5 ground-truth labels, the
algorithm performance is incorrectly penalized. As a result, the maximum achievable
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Fig. 3. Example images from the MSRC-21 (top row) and SIFT Flow (bottom row) data set. The
first column shows a test image for each. The ground-truth segmentations with their labels are
shown in the second column. The last two columns highlight the benefits of using image-level pre-
dictions to help segment level prediction. Label predictions using SegProp and TagProp+SegProp
(top row), Token and TagProp+Token respectively (bottom row), are shown. In both cases, the
combined method improves over the segment-level one.

precision is not 100%. We report BEP scores and agree with [10, 11] that they are more
meaningful.

Tab. 3 summarizes the performance of the methods we compare on the Corel5k
dataset. The Token Model achieves a low performance of 8.2%, in line with the pub-
lished results of a similar model [2]. As in the segment-level evaluation, our SegProp
model improves over the Token Model for stage C and reaches 11.2%. Moreover, the
gain is higher when using label copy in stage B: 14.9%. Further improvement is ob-
tained by fusing the C and D stages in our newly proposed Global SegProp model:
19.8%.

As the ‘TagProp’ row shows, consistent with previous observations [11, 17], directly
predicting image labels using a global similarity outperforms segment-level methods on
this task. Note that our result of 36.2% using TagProp with K = 200 closely matches
the best variant of TagProp reported in [11] (36.3%).

Our integrated TagProp+Global SegProp method brings a large improvement over
Global SegProp (+17.2%). Importantly, it also improves over state-of-the-art TagProp
alone. Therefore, our method also improves over other works such as [9, 13], which
were outperformed by TagProp (see scores for MBRM or TGLM within [11]).

10 Conclusion
We have presented a unified view on image-level and segment-level methods, where
existing works can be casted in a common framework. We have proposed new models
for some of the stages and, importantly, novel models to perform joint prediction on
both levels.

We have conducted extensive experiments on two challeging data sets for pixel-
level annotation and on a third one for image-level annotation. Our evaluation confirms
that combining image-level and segment-level models brings better results than either
model alone, on both tasks. The improvement is particularly strong for the segment
labeling task. This shows that both levels have complementary strengths. Finally, note
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that our combined method TagProp+SegProp performs both tasks at the same time. It
labels both the pixels and the whole image, unlike TagProp and image-level methods in
general, which only deliver image labels.
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