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Abstract. We present LS-CRF, a new method for training cyclic Con-
ditional Random Fields (CRFs) from large datasets that is inspired by
classical closed-form expressions for the maximum likelihood parameters
of a generative graphical model with tree topology. Training a CRF with
LS-CRF requires only solving a set of independent regression problems,
each of which can be solved efficiently in closed form or by an itera-
tive solver. This makes LS-CRF orders of magnitude faster than classi-
cal CRF training based on probabilistic inference, and at the same time
more flexible and easier to implement than other approximate techniques,
such as pseudolikelihood or piecewise training. We apply LS-CRF to the
task of semantic image segmentation, showing that it achieves on par
accuracy to other training techniques at higher speed, thereby allowing
efficient CRF training from very large training sets. For example, train-
ing a linearly parameterized pairwise CRF on 150,000 images requires
less than one hour on a modern workstation.

1 Introduction

Many areas of computer vision research have recently made a transition from
datasets with a few thousand images to much larger datasets with millions of
images. One area that is relatively untouched by this trend is semantic image
segmentation, i.e. the task of assigning a semantic label, such as grass or building
to every pixel in an image. There are few aspects that hold back the field: a
lack of large-scale image segmentation datasets, because manually creating their
annotation is tedious and costly, and a lack of learning techniques for structured
prediction models that scale to truly large amounts of training data. In this
work, we make two contributions that address both problems:

• a method for CRFs training that is scalable (training sets can be 100,000
images or larger), flexible (allowing for linear or nonlinear predictors), and easy
to implement (only a few lines of code are required for the linear variant),

• two new large scale datasets 1 (over 180,000 training images) for image seg-
mentation, assembled from ImageNet [8] and PASCAL VOC [11] datasets and
augmented with semi-automatically created figure-ground annotations.

1 available online at http://pub.ist.ac.at/~akolesnikov/HDSeg
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Fig. 1. Schematic illustration of LS-CRF for image segmentation – training phase: (a)
we are given images with predefined graph structure (here based on superpixels) and
per-node annotation (here: fg/bg), (b) we form training subproblems from all edges
in the graph (shown for bold subgraph), (c) for each label combination, we train a
linear (solid line) or nonlinear (dashed line) regressor to predict the label combination’s
conditional probability.

We call the new method LS-CRF, where the LS stands both for least squares
and for large scale. It can in principle be used for any pairwise discrete-valued
CRFs, but in particular it is suitable for the classes of CRFs that occur in
computer vision applications, such as image segmentation, where 1) the CRF
(i.e. its underlying graph) is cyclic, 2) all variables are of the same ”type”, e.g.
pixels or superpixels, 3) each variable takes values in a rather small label set,
and 4) many training examples are available.

Figures 1 and 2 illustrate LS-CRF for semantic image segmentation. A formal
definition and justification are given in Section 2. Our contribution lies in the
steps 1(b), 1(c) and 2(a), which we explain in detail in Section 2. The main idea
is to decompose the joint learning problem into smaller, tractable subproblems
and learn their parameters by independent least-squares regression tasks. For
a new image, the output of the regressors provide values for the energy tables
for all pairwise terms. This induces a (conditional) probability distribution over
the label set, from which we infer a segmentation, for example by maximum-a-
posteriori (MAP) prediction.

Compared to existing methods, LS-CRF has several advantages: in contrast
to generic maximum likelihood training for CRFs, no step of joint probabilistic
inference (i.e. computing marginals over the training data) is required during
training. Instead, the training is formulated as solving a collection of subprob-
lems, which can be solved efficiently and even in parallel. This makes training
scalable even to large datasets. In our experiments, training with over 150,000
images takes less than one hour on a modern workstation. In contrast to related
techniques, such as pseudolikelihood or piecewise training, a closed-form solution
for the optimal parameters is available for the case of a linear parameterization
and squared loss, which can be solved in just a few lines of code. However,
LS-CRF is not limited to linear parameterizations. It also allows efficient learn-
ing of nonlinear, even non-parametric, energy functions. In our experiments, we
demonstrate this by learning a CRF with an energy function based on gradient
boosted decision trees.
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Fig. 2. Schematic illustration of LS-CRF for image segmentation – prediction phase:
(a) for a new image we use the regressors to predict an energy table for each pairwise
term (visualized on three edges between four nodes), (b) The energy function defines
a probability distribution which yields a segmentation (here: by MAP prediction).

The two new datasets that we introduce, HorseSeg and DogSeg, are described
in Section 5. They are meant to facilitate experiments in two setups that reflect
recent trends in computer vision research: large-scale learning, and learning with
weakly annotated data. In combination the datasets consist of over 180,000 im-
ages that were taken from the PASCAL VOC and the ImageNet dataset. For the
test images we provide manually created segmentation masks, thereby allowing
for an unbiased evaluation. The training images come with three different lev-
els of annotation: all training images have a class label, some training images
have object bounding boxes, few training images have manually created per-pixel
segmentations. In this form, the datasets can be used to evaluate segmentation
algorithms based on semi-supervised or weakly supervised learning.

In addition, for each training image we provide a segmentation mask created
automatically using the segmentation transfer method [18]. With this annota-
tion, the datasets can serve as a benchmark for the efficiency of large scale
learning methods, or to analyze the stability of learning algorithms to annota-
tion noise.

2 Closed-Form Training of Conditional Random Fields

In this section we formally introduce LS-CRF training and justify its construc-
tion from classical results about probabilistic inference and estimation theory.
We highlight the similarities and differences of LS-CRF to previous methods for
CRF learning and discuss possible extensions.

2.1 Conditional Random Fields

We follow the standard notation for the probabilistic learning of discrete condi-
tional random fields (CRFs). See, e.g., the tutorial [24] for an introduction in the
context of computer vision. To facilitate the discussion, we refer to the objects
of interest in the context of image segmentation, but note that all steps are also
applicable for training CRFs for other tasks.

We denote input images by x ∈ X , and outputs (segmentations) by y ∈ Y.
Any y is a collection of interacting parts, y = (y1, . . . , ym), where each part ys
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for s = 1, . . . ,m takes a value in a finite label set, L = {1, . . . , r}. Every y has a
graph, G = (V, E), associated with it. The vertex set, V = {1, . . . ,m}, reflects the
parts, and the edge set, E ⊂ V×V, contains an edge for every directly interacting
pair of parts. For example, in image segmentation the edge E typically contains
all pairs of adjacent pixels or superpixels.

A CRF models a conditional distribution of outputs given inputs by

p(y|x;w) = exp(−E(x, y;w) )/Z(x;w), (1)

where E(x, y;w) is an energy function with parameter w, and the normalizing
constant Z(x;w) =

∑
y∈Y exp(−E(x, y;w)) is called the partition function. Most

popular for computer vision applications are energy functions consisting of unary
and pairwise terms.

E(x, y;w) =
∑
s∈V

∑
j∈L

θs;jJys=jK +
∑

(s,t)∈E

∑
(j,k)∈L×L

θst;jkJys=j ∧ yt=kK, (2)

where JP K = 1 if the predicate P is true, and 0 otherwise. The coefficients are
functions of a subset of the input x and parameters w. Writing lower indices
to indicate which parts of the input and parameter vector to use, we set θs;j =
log g(xs, wj) and θst;jk = log f(xst, wjk). Different choices of g and f result in
model of different complexity and expressive power.

Given a training set, {(x1, y1), . . . , (xn, yn)}, the goal of CRF learning is to
identify the parameters maximizing the conditional likelihood (CL) of the data,
or equivalently, that minimizes the negative logarithm of this quantity, i.e.

w = argminw̄ `CL(w̄), with `CL(w̄) =
∑n

i=1
E(xi, yi; w̄) + logZ(xi; w̄). (3)

Unfortunately, computing expression (3) exactly is computationally infeasible
(more exactly, #P -hard [6]), even for small n, unless the underlying graphs are
cycle-free. Consequently, all currently used methods for CRF training on cyclic
graphs, as they occur in image segmentation tasks, aim only for approximate
solutions. Ultimately, their performance on real data determines their usefulness.
We discuss successful previous techniques in Section 3.

2.2 Least Squares CRF Training (LS-CRF)

To introduce LS-CRF, we assume an energy function in canonical form, i.e.
the energy function contains exactly one term for each maximal clique of the
underlying graph and no terms for smaller cliques. For pairwise models in which
each part occurs in at least one edge this means that the energy has only pairwise
terms. Note that we do not lose any expressive power by this: for every energy
function with unary and pairwise terms there is an energy function with only
pairwise terms that has identical values for all labelings.

Algorithm 1 shows the training phase of our method in pseudocode. The
main step is solving multiple independent regression problems in line 5. For each
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Algorithm 1 LS-CRF – Training

input training data: (xi, yi, Gi)i=1,...,n,
xi: images, yi: ground truth annotation, Gi = (Vi, Ei): graphs,

input regularization parameter: λ ≥ 0,
1: set φist ← φ(xist) ∈ RD // edge feature vector for all i = 1, . . . , n, and (s, t) ∈ Ei
2: for j, k ∈ L×L do
3: set µist;jk ← Jyis=j ∧ yit=kK for all i = 1, . . . , n, and (s, t) ∈ Ei
4: form training set Sjk =

⋃
i∈I
⋃

(s,t)∈Ei
{

(φist, µ
i
st;jk)

}
5: learn wjk from Sjk by regularized least squares regression

wjk ← argminw̄jk

∑
(φ,µ)∈Sjk

‖f(φ, w̄jk)− µ‖2 + λ‖w̄jk‖2

6: end for
output parameter vector w = (wjk)(j,k)∈L×L.

Algorithm 2 LS-CRF – Prediction

input image x, graph G = (V, E),
input weight vector w = (wjk)(j,k)∈L×L,
1: φst ← φ(xst, wjk) ∈ RD // edge feature vector for all (s, t) ∈ E
2: for j, k ∈ L×L do
3: θst;jk = log fjk(φst) for all (s, t) ∈ E
4: end for
5: E(x, y;w) =

∑
(s,t)∈E,(j,k)∈L×L θst;jkJys=j ∧ yt=kK

output energy function E(x, y;w)

label combination, (j, k) ∈ L × L, we form a training set, Sjk = {(φ1, µ1), . . . ,
(φN , µN )}, by merging of all pairs (φist, µ

i
st;jk), where φist is a feature vector

reflecting the visual information in the parts xs and xt, and µist;jk is an indicator

whether the edge (s, t) in the training example xi was labeled with the current
label combination (j, k) or not. Note that the resulting number of samples N
will be much larger than the number of training images n, since every training
image contributes many edges.

We obtain wjk by solving the regularized least squares regression problem

wjk = argminw̄jk

∑
(φ,µ)∈Sjk

‖fjk(φ, w̄jk)− µ‖2 + λ‖w̄jk‖2, (4)

where λ ≥ 0 is a regularization parameter. In case of a linear parameterization,
f(φ,w) = 〈w, φ〉, Equation (4) has a closed-form solution,

wjk = (ΦΦ> + λ I)−1Φµ, (5)

where Φ = (φ1| . . . |φN ) is the feature matrix and µ = (µ1, . . . , µN )> is the vector
of outputs. Computing wjk requires solving a linear system of size D × D for
D-dimensional feature representation, which is possible efficiently even for D in
the order of thousands. Since only matrix operations are required, Equation (5)
can also be solved easily on a GPU.

To fully train a CRF, one solves one instance of Equation (5) for each la-
bel combination (j, k). Only the target vector µ differs between these, so com-
pared to a naive loop we obtain a substantial speedup by precomputing an
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LU-factorization and then solving the individual problems by backwards substi-
tution.

When the number of training examples is too large for Φ to fit into memory,
the computation of ΦΦ> can become the computational bottleneck. In this case,
the use of iterative least-squares solvers instead of the closed-form expression is
advisable, for example LBFGS [7], or plain stochastic gradient descent [5].

Algorithm 2 shows how the result of LS-CRF training is used to predict
labelings for new images. We use the trained regression functions, fjk, to predict
the values of the pairwise terms of an energy function E(x, y;w). As for any
CRF, the resulting energy induces a conditional probability distribution over all
possible labelings, from which we can predict an output labeling. In this work
we rely on MAP prediction, i.e. y∗ = argmaxy∈Y p(y|x;w).

2.3 Extensions

Several extensions of the above procedure are possible. For example, pairwise
terms of different types can be learned (e.g. vertical versus horizontal edges), by
forming individual learning problems for each of them. A particular advantage
of LS-CRF is that the main learning step, Equation (4), is not limited to the
situation of linearly parameterized energies. This allows increasing the expressive
power of the model by training nonlinear predictors when necessary, e.g. for low-
dimensional feature spaces. It is also possible to use different loss functions than
the squared loss. To illustrate this we also report on experiments using gradient
boosted decision trees [13] and logistic loss in Section 5.

2.4 Motivation and Analysis

Like all tractable techniques for the training of cyclic CRFs, LS-CRF does not
solve the exact CRF training problem but an approximation to it. In this sec-
tion, we justify this approximation based on two observation: the fact that one
can overcome the intractability of CRF training by constructing bounds to the
partition function that decompose into smaller parts, and a classical result how
to estimate the optimal parameter for tree-shaped generative probability distri-
butions from samples.

The first aspect LS-CRF shares with other approximate training methods:
for any CRFs with an energy function consisting only of pairwise terms the
following inequality holds

logZ(x; θ) = log
∑
y∈Y

exp(−E(x, y;w) ≤
∑

(s,t)∈E

log
∑

(ys,yt)∈L×L

exp(−Est(x, y;w)), (6)

where Est(x, y; θ) =
∑

(j,k)∈L×L θst;jkJys=j ∧ yt=kK is the term of the energy

function corresponding to the edge (s, t). This relation has been observed, for
example, in [29], where it is used to motivate piecewise training : one replaces
the logZ term in the original log-likelihood function (Equation (3)) by its upper
bound and performs gradient descent optimization on the resulting approximate
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objective. This allows for faster training, since the right hand side of (6) decom-
poses additively over the edge set.

LS-CRF goes one step further, as it estimates the parameters of the decom-
posed model not by gradient descent on the decomposed approximate conditional
likelihood, but by a direct regression between the input features and suitably
chosen output values. To show the justification of this procedure, we rely on
the classical, but rarely used, result that there exists a closed-form expression
for estimating the parameter of a probability distribution (not conditional) with
tree-shaped graph structure from samples (see [33, page 150]).

We assume the same situation as Equation 2, except that there is no depen-
dence on x, so θs;j and θst;jk are constants. Given samples y1, . . . , yn from p(y; θ),

an elementary calculation shows that θ̂s;j = log µ̂s;j and θ̂st;jk = log
µ̂st;jk

µ̂s;j µ̂t;k
are

consistent estimators of the optimal θs;j and θst;jk, where µ̂s;j = 1
T

∑n
i=1Jy

i
s=jK

and µ̂st;jk = 1
T

∑n
i=1Jy

i
s=j ∧ yit=kK are the empirical unary and pairwise marginals

over the training set.
For LS-CRF we generalize the above closed-form expression to a technique

for estimating the parameters of a conditional distribution, i.e. a CRF. The
samples we observe, {(x1, y1), (x2, y2), . . . , (xn, yn)}, are now pairs of inputs and
outputs. In particular, no input repeats and for each input only one output
is available. Therefore, the empirical marginals are just indicators which labels
and label pairs occurred: µ̂s;j(x

i) = Jyis=jK, and µ̂st;jk(xi) = Jyis=j ∧ yit=kK.
Nevertheless, we know that these values are i.i.d. samples from the conditional
distributions p(ys = j|x) and p(ys = j, yt = k|x), respectively. We can learn
predictors fs;j(x) ≈ p(ys = j|x) and fst;jk(x) ≈ p(ys = j, yt = k|x), and obtain

parameter estimates θ̂s;j(x) = log fs;j and θ̂st;jk = log
fst;jk

fs;j(x)ft;k
that generalize

from the observed samples to unseen data. Algorithm 1 implements the step of
learning the pairwise predictor, fst;jk, which we’ll see below is sufficient for us.

For tree-shaped models, the learned predictors provide a consistent estimator
of the conditional distribution, as long as the underlying regression technique is
consistent. For cyclic models, we do not have this guarantees. However, we can
apply the above construction for each edge (which is loop-free) of the decomposed
representation. This yields a partial energy

Est(x; θ̂st) =
∑

j
θ̂s;jJys = jK +

∑
j,k
θ̂st;jkJys = j ∧ yt = kK +

∑
k
θ̂t;kJyt = kK

=
∑

j,k

(
θ̂s;j + θ̂st;jk + θ̂t;k

)
Jys = j ∧ yt = kK

=
∑

j,k
(log fst;jk)Jys = j ∧ yt = kK, (7)

which reflects how Algorithm 2 constructs the energy function. It also shows
that only estimates for the pairwise terms are required, not for the unary ones.

3 Related work

Probabilistic CRF training aims at maximizing the conditional likelihood of the
training data. However, doing so requires probabilistic inference as a subroutine,
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and this is provably intractable for cyclic models [6]. Consequently, all practical
methods rely on approximations. The simplest idea is to use approximate infer-
ence methods during the optimization. This can lead to unstable behavior of the
optimization process or even divergence [9]. This is also not scalable, since even
approximate probabilistic inference is computationally demanding.

The empirically most successful techniques form a tractable approximation
to the conditional likelihood and then solve for its optimum, in particular pseu-
dolikelihood (PL) [4] and piecewise (PW) training [29]. LS-CRF is related to
PW training in that it also relies on a per-edge decomposition, but it differs in
how it estimates the parameters. In particular, it supports non-linear and even
non-parametric estimates of the energy function. To our knowledge this feature
is only shared by decision tree fields (DTFs) [25], which differ, however, in other
aspects. In particular, they are trained by a PL approximation.

Structured support vector machines (SSVMs) [32] have been proposed as a
alternative to CRFs, based not on probabilistic reasoning but on the maximum
margin principle. Like CRFs, exact SSVMs training is intractable for almost all
cyclic models, since it requires repeated runs of MAP prediction during training.
Similarly to CRFs, it has been observed that training with approximate MAP
can lead to a drop in prediction quality [12]. In contrast to CRFs, so far few
decomposition-based techniques exists for SSVMs. Prominent examples are [10,
21, 23], which introduce a scheme of alternating between two steps: solving inde-
pendent subproblems and updating Lagrange multipliers to enforce consistency
between the solutions of the subproblems. However many iterations may be re-
quired until convergence, and experience in a large-scale setting is so far missing.
Another example is pseudo-max [28], which replaces the SSVM objective with a
tractable approximation inspired by the PL method.

In computer vision it is common to use hybrid techniques (e.g. [14, 26, 27]):
first, ordinary classifiers, e.g. SVMs or random forests, are trained to predict
unary features. Afterwards, a CRF or SSVM is run using the outputs of the
classifiers as features or drop-in replacements for the unary terms. This does
not avoid training a CRF altogether, though, it only reduces the number of
parameters that need to be learned.

4 Implementation

Implementing LS-CRF is straight-forward, since it only requires solving multiple
regression problems. Several efficient software packages are readily available for
this task. In our experiments with linear regression, we use the Vowpal Wabbit
package2 (LBFGS optimization, learning rate 0.5, no explicit regularization),
clamping the predictions to the interval [10−9, 1]. Vowpal Wabbit is particularly
suitable for large scale learning, since it supports a variety of infrastructures,
from single CPUs to compute clusters. As nonlinear regressors we train gradient
boosted regression trees using the MatrixNet package [31] with default parame-
ters (500 oblivious trees, depth 6, learning rate 0.1).

2 http://hunch.net/~vw/
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We also implement several baselines: to study the impact of pairwise terms
in the energy function, we train CRFs with only unary terms using the same
regression methods as LS-CRF. We also implemented CRF training by piece-
wise training using Vowpal Wabbit, and by pseudolikelihood using the grante
library3. In the unary-only case, both of these techniques are equivalent to lo-
gistic regression, for which we again use Vowpal Wabbit.

In addition, we implement two baselines that require global inference dur-
ing training: a standard maximum-likelihood CRF trained by gradient descent
with approximate gradients obtained by TRW belief propagation, and a struc-
tured SVM with approximate subgradients based on MAP prediction using
MQPBO+TRWS (see below). Note that convergence for the latter two methods
cannot be ensured, see our discussion in Section 5.1. Implementation and model
selection is also more involved for these methods, so we suspect that improve-
ments in terms of speed and convergence would be possible.

At test time, we create segmentations of the test images by MAP prediction.
For this, we apply MQPBO [19] followed by TRWS [20], both from the OpenGM2
library [2]. We observed that this combination is very efficient and usually yield
close to optimal results.

5 Experimental Evaluation

Our focus in this work lies on large-scale semantic image segmentation, where a
semantic label should be assigned to each pixel or superpixel in an image. In the
case of multi-class semantic segmentation, these labels correspond to semantic
classes, such as road, car or person. The number of labels, r, is typically between
5 and 20 in this case. A case of special interest is figure–ground segmentation,
where r = 2 and the labels indicate foreground (fg) and background (bg).

In Section 5.1 we report on experiments on the relatively small Stanford
background dataset. The reason is that many techniques are applicable in this
setup, so we can compare LS-CRF to previous techniques. In Section 5.2 we
report on experiments on the DogSeg and HorseSeg datasets. These two datasets
that we introduce in this work are by far larger than existing ones and show how
LS-CRF allows scaling CRF training to very large datasets, and how the quality
of semi-automatically generated annotation influences the segmentation quality.

5.1 Small scale experiments – Stanford background dataset

The Stanford background dataset [16], consists of 715 natural images with man-
ually created ground truth annotation. We represent each image by a graph of
SLIC superpixels [1] with an edge for any touching pair of superpixels. For each
superpixel, s, we compute of feature vector, φs, by concatenating of the following
base features: average RGB color in s (3-dimensional), center of s in relative im-
age coordinates (2-dim.), rootSIFT descriptor [3] at the center of s (128-dim.),

3 http://www.nowozin.net/sebastian/grante/
4 Note that grante is not multi-threaded, so PL runtimes are higher than necessary.
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Accuracy
unary pairwise u→p (abs) u→p (rel)

LS-CRF linear 70.3± 1.0 73.4± 1.1 3.1 4.4%
LS-CRF nonlinear 70.9± 1.1 73.3± 1.1 2.4 3.4%

LR 70.4± 0.8 – – –
PL — 71.0± 1.1 0.6 0.9%
PW — 72.9± 0.9 2.5 3.6%
ML — (see text) – –
MM – (see text) – –

Gould et al. [16] – 74.3 – –
Gould, Zhang [17] – 73.4-73.9 – –

Lempitsky et al. [22] – 75.0-81.1 – –
Gould [15] 73.0 78.6 5.6 7.7%

Tighe, Lazebnik [30] 76.9 77.5 0.6 0.8%

Training Time
unary pairwise

66s 216s
15m 150m

45s —
— 2356s4

— 340s
— >3 hours
— >3 hours

Table 1. Result of LS-CRF (top table), baselines (middle table; LR=logistic regression,
PL=pseudolikelihood, PW=piecewise, ML=maximum likelihood, MM=maximum
margin) and CRF-like approaches from the literature (bottom table) on the Stanford
background dataset. Standard deviations are computed over 5 splits of the dataset.
Since absolute results are hardly comparable between different publications due to
different features used, we also report the absolute and relative improvement from
pairwise terms (u→p) where possible.

predicted per-label probabilities (8-dim.), where the last vector consists of the
outputs of per-label training boosted tree classifiers on a subset of the training
data. For each edge (s, t) we define a feature representation by concatenating
the features of the contributing superpixels, φst = [φs, φt].

Table 1 summarizes the results on the Stanford Background dataset in nu-
meric form. For segmentation examples, please see the supplemental material.
We compare following setups: LS-CRF (unary-only or pairwise energies) with
linear or nonlinear parameterization, pseudolikelihood (PL), piecewise train-
ing (PW), approximate maximum likelihood (ML) training. We also include
an SSVM with approximate maximum margin (MM) training. Note, that PL,
PW and ML all reduce to logistic regression (LR) when used with only unary
terms.

We also report results for related methods (pairwise cyclic CRF) from the
literature. In general, it is problematic to compare between results from different
segmentation papers on an absolute scale, as the choice of representation and
image features has a large impact. This is visible also in Table 1 by large differ-
ences already between models with only unary terms. A more robust measure is
the increase a method achieves between unary and pairwise energies, which we
also report for all methods where data for both cases is available.

Overall, the results show that for learning a segmentation model with only
unary terms, the squared loss objective of LS-CRF achieves comparable result to
the usual probabilistic loss (i.e. logistic regression). Including pairwise terms into
the model improves the segmentation accuracy in all cases. The increase from
LS-CRF is comparable to what other methods achieve, including results from
the literature, with the exception of pseudolikelihood training, which was less
beneficial in this case. In terms of runtime, LS-CRF was the fastest method for
training models with pairwise terms. For unary-only models, logistic regression
training is slightly faster.
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Fig. 3. Example images and segmentation masks from the HorseSeg (left) and DogSeg
(right) datasets. For each dataset we illustrate: manually created annotation (left),
annotation from bound boxes (middle) and annotation from per-image labels (right).
Annotation from bounding boxes is typically rather accurate, the quality of annotation
from per-image class labels varies substantially.

The nonlinear and the linear versions of LS-CRF achieve comparable perfor-
mance on the Stanford background dataset, likely because the amount of training
data per label or label pair is small, so the additional flexibility of a nonlinear
decision function is not required.

ML and MM training are two special cases, as they require joint probabilistic
inference or MAP prediction during training. We used TRW for approximate
marginal inference, and MQPBO+TRWS for approximate MAP and stopped
training after three hours. The results obtained were 64.8 ± 1.4 (lower than
unary-only) and 72.5± 0.8 (lower than LS-CRF) for ML and MM, respectively.
Since there is no fundamental reason why exact training should perform worse
than approximate one, we do not believe that these numbers are representative
for either of the methods. Better performance might be achievable with better
approximate inference techniques and at the expense of longer training times.

5.2 Large scale experiments – HorseSeg and DogSeg datasets

Our main interest lies on the scalable learning regime, where one hundred thou-
sand or more images are available for training. To analyze this situation we
make a second contribution of this paper besides LS-CRF: a new benchmark for
large-scale CRF training in the form of two figure–ground image segmentation
datasets, HorseSeg with 25,078 images and DogSeg with 156,368 images, which
are available online at http://pub.ist.ac.at/~akolesnikov/HDSeg. The im-
ages for both datasets were collected from the ImageNet dataset [8] and the
trainval part of PASCAL VOC2012 [11]. As test set, we use 241 horse images
and 306 dog images, which were annotated manually with figure-ground segmen-
tations. Note, that part of these images were annotated via Amazon Mechanical
Turks and can contain a small amount of noise.

All images from the PASCAL dataset have manually created ground truth
annotation as well. The remaining images from ImageNet have manual annota-
tion of two different detail levels: each image has a class label, and approximately
one quarter of all images also have annotation in form of a manually specified ob-



12 A. Kolesnikov, M. Guillaumin, V. Ferrari, C. H. Lampert

ject bounding box. As such, the dataset provides a natural benchmark for weakly
supervised or semi-supervised image segmentation in a large scale regime.

To facilitate experiments on large-scale supervised training, we also provide
semi-automatically created figure-ground annotation for all images of the two
datasets, based on the following procedure. For the images with bounding box
annotation (6,044 of the horse images and 42,763 of the dog images), we ap-
ply the segmentation transfer method of [18] to the bounding box region. A
visual inspection of the output (see Figure 3) shows that the resulting segmen-
tations are of high accuracy, so using them as a proxy for manual annotation
seems justified. For the remaining images only a per-image class label is known.
To these images we apply the unconstrained segmentation transfer, which also
yields figure–ground segmentation mask, but of mixed quality (see Figure 3). One
aspect we study in our experimental evaluation is in how far the quality of im-
age segmentation methods can be improved by adding such semi-automatically
generated annotation to the training data.

Note that even though part of the training annotation is generated algorith-
mically, the evaluation is performed with respect to manually created ground
truth, so the evaluation procedure is not biased towards the label transfer method.

For our experiments on HorseSeg and DogSeg we use the same feature rep-
resentation as for the Stanford dataset, except that we add the output of per-
pixel classifiers for foreground and background as two additional dimensions.
The questions we would like to answer are: 1) can we scale CRF training to
truly large datasets? and 2) what is the effect of relying on semi-automatically
generated annotation for this task?

We study these questions in three sets of experiments using different sub-
sets of the training data: (a) only images with manually created annotation,
(b) images with annotation created manually or by segmentation transfer using
bounding box information, (c) all training images. In each case we train CRFs
with pairwise terms using the linear and nonlinear variants of LS-CRF, and
we compare their segmentation performance to models with only unary terms
(which is always computationally feasible). In situation (a), we use the feature
vectors of all available superpixels to train the unary-only models, and all neigh-
boring superpixel pairs to train LS-CRF with pairwise terms. In the larger setup,
(b) and (c), we reduce the redundancy in the data by using only 25% of all super-
pixels for the unary-only models, sampled in a class-balanced way. For pairwise
models, we record the ratio of pairs with same label versus with different label.
Preserving this ratio, we sample 10% of all superpixels pairs, in a way that com-
binations with both foreground and both background are equally likely, and also
foreground/background and background/foreground transitions are equally likely.
The percentages are chosen such that the training problems in both situations
are of comparable size. On the DogSeg dataset, they consists of approximately
90K data points for situation (a), 3.5M data points for (b), and 13M data points
for (c), except the pairwise/nonlinear case, where we use only 6.5M data points
for memory reasons. On the HorseSeg, the number are roughly half as big for
(a), and one sixth for (b) and (c).
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a) Training time linear/unary linear/pairwise nonlinear/unary nonlinear/pairwise

HorseSeg - manual (147 images) <1m <1m <1m 1.5m
HorseSeg - bbox (6K images) <1m <1m 9m 32m
HorseSeg - all (25K images) 1m 2m 88m 354m

DogSeg - manual (249 images) 2.5m 2.5m <1m 2m
DogSeg - bbox (43K images) 7m 14m 110m 348m
DogSeg - all (156K images) 20m 46m 519m 668m

b) Accuracy linear/unary linear/pairwise nonlinear/unary nonlinear/pairwise

HorseSeg - manual (147 images) 81.4 82.2 81.6 83.8
HorseSeg - bbox (6K images) 82.0 83.6 83.6 86.4
HorseSeg - all (25K images) 81.4 82.5 83.3 84.5

DogSeg - manual (249 images) 77.8 78.5 79.1 80.8
DogSeg - bbox (43K images) 78.5 80.9 81.2 83.8
DogSeg - all (156K images) 78.1 80.0 80.2 82.2

Table 2. Results of LS-CRF for figure-ground segmentation on different subsets of
the HorseSeg and DogSeg datasets. Top table: training time (in minutes), bottom row:
segmentation accuracy (per-class average in %). Row indicate which subset of the
training data was used; manual: only images with manually created annotation, bbox:
additionally all images with annotation created automatically from bounding boxes,
all: additionally all images with annotation created from per-image class labels.

The first result is that we can answer question 1) in the positive. Table 2a)
lists the approximate training time on a 12 core workstation with enabled hyper-
threading, not including the overhead from feature extraction. The table shows
that training linear LS-CRF is highly efficient, requiring less than one hour even
for the largest dataset. The use of pairwise terms instead of just unaries only
incurs a modest slowdown. For comparison, even if probabilistic inference were
possible within less than one second per image, training a CRF by ordinary
maximum likelihood learning on this dataset would take days or weeks. Training
nonlinear predictors is computationally more expensive, but still feasible.

Figure 4 illustrates some segmentation result. More images are provided in
the supplemental material. Table 2b) shows a quantitative evaluation of the
segmentation accuracy of the different setups. The results allow us to make
several observations that we believe will be relevant to other researchers in the
area. First, it has been reported previously that pairwise terms have only a
minor beneficial effect for image segmentation tasks (e.g. [14]). Our experiments
confirm this observation when a linear representation is used and the number
of training examples is small. However, when a large training set was used, the
difference between unary-only and pairwise models increases.

Second, the use of nonlinear predictors consistently improved the segmen-
tation quality, even though this comes at a significant cost in training time.
This can be a useful insight also for other CRF training methods, which rely
predominantly on linearly parameterized energy functions.

Third, we see a substantial improvement of the segmentation quality when
increasing the number of training images by adding images that had their annota-
tion created automatically from bounding boxes information. This indicates that
segmentation transfer followed by large-scale CRF learning could be a promising
way for leveraging large amounts of images for training even without manually
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Fig. 4. Example segmentations by LS-CRF for the DogSeg dataset.

labelling them with pixelwise segmentations. Adding also images with annota-
tion created just from per-image class labels still improves results over not using
additional images, but decreases the quality compared to the situation when only
images with bounding box information were used. This observation suggests that
a tradeoff between the number of training examples (i.e. data collection) and the
quality of annotations (i.e. labeling effort) is necessary. We plan to study this
aspect in future work.

As a first step in this direction, we performed additional experiments in which
we measure how useful the annotated annotation is by itself. For the HorseSeg
dataset, we trained using exclusively the images with annotation from bounding
boxes, or on images with annotation from per-image labels, i.e. we did not use
the images with manually created annotation during training. This resulting
per-class accuracies are 82.0 (unary) and 83.9 (pairwise) for the bounding box
case, and 81.1 (unary) and 82.8 (pairwise) for the per-image case. Comparing
this to the values 81.4 (unary) and 82.2 (pairwise) from Table 2b), we see that
the generated segmentations do contain useful information. Even training only
on images with segmentations inferred from their class label yields comparable
results to training on the (much smaller) set of manually annotated images.

6 Summary

In this work we make two main contributions: 1) we present LS-CRF a new
technique for inference-free CRF training that scales to very large training sets.
Because of its simplicity and flexibility, we believe it has the potential to become
a standard tool for training cyclic CRFs. Moreover, in future work we plan to
consider approximations other then separable bound (6), for example, the Bethe
approximation [33]. 2) we introduce two new benchmark datasets consisting of
over 180,000 images and segmentation masks. It is meant to facilitate research
on large-scale CRF training and in particular on image segmentation, which so
far is held back by the lack of suitably large-scale datasets.

From our experimental evaluation we obtain first insights in this direction:
we saw that the positive effect of pairwise terms increased with the size of the
training set, that training CRFs with nonlinear energies is feasible and results in
better segmentation models, and that learning with semi-automatic annotation
is practical and useful for image segmentation.
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