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Abstract We present a unified framework tackling two prob-
lems: class-specific 3D reconstruction from a single image,
and generation of new 3D shape samples. These tasks have
received considerable attention recently; however, most ex-
isting approaches rely on 3D supervision, annotation of 2D
images with keypoints or poses, and/or training with mul-
tiple views of each object instance. Our framework is very
general: it can be trained in similar settings to existing ap-
proaches, while also supporting weaker supervision. Impor-
tantly, it can be trained purely from 2D images, without pose
annotations, and with only a single view per instance. We
employ meshes as an output representation, instead of vox-
els used in most prior work. This allows us to reason over
lighting parameters and exploit shading information during
training, which previous 2D-supervised methods cannot. Thus,
our method can learn to generate and reconstruct concave
object classes. We evaluate our approach in various settings,
showing that: (i) it learns to disentangle shape from pose and
lighting; (ii) using shading in the loss improves performance
compared to just silhouettes; (iii) when using a standard sin-
gle white light, our model outperforms state-of-the-art 2D-
supervised methods, both with and without pose supervi-
sion, thanks to exploiting shading cues; (iv) performance
improves further when using multiple coloured lights, even
approaching that of state-of-the-art 3D-supervised methods;
(v) shapes produced by our model capture smooth surfaces
and fine details better than voxel-based approaches; and (vi)
our approach supports concave classes such as bathtubs and
sofas, which methods based on silhouettes cannot learn.
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1 Introduction

Reconstructing 3D objects from 2D images is a long-standing
research area in computer vision. While traditional methods
rely on multiple images of the same object instance (Seitz
et al., 2006; Furukawa and Hernández, 2015; Broadhurst
et al., 2001; Laurentini, 1994; De Bonet and Viola, 1999;
Gargallo et al., 1999; Liu and Cooper, 2010), there has re-
cently been a surge of interest in learning-based methods
that can infer 3D structure from a single image, assuming
that it shows an object of a class seen during training (e.g.
Fan et al., 2017; Choy et al., 2016; Yan et al., 2016; see
Sect. 2.1). A related problem to reconstruction is that of
generating new 3D shapes from a given object class a pri-
ori, i.e. without conditioning on an image. Again, there have
recently been several works that apply deep learning tech-
niques to this task (e.g. Wu et al., 2016; Zou et al., 2017;
Gadelha et al., 2017; see Sect. 2.2).

Most learning-based methods for reconstruction and gen-
eration rely on strong supervision. For generation (e.g. Wu
et al., 2016; Zou et al., 2017), this means learning from
large collections of manually constructed 3D shapes, typi-
cally ShapeNet (Chang et al., 2015) or ModelNet (Wu et al.,
2015). For reconstruction (e.g. Choy et al., 2016; Fan et al.,
2017; Richter and Roth, 2018), it means learning from im-
ages paired with aligned 3D meshes, which is very expen-
sive supervision to obtain (Yang et al., 2018). While a few
methods do not rely on 3D ground-truth, they still require
keypoint annotations on the 2D training images (Vicente
et al., 2014; Kar et al., 2015; Kanazawa et al., 2018), and/or
multiple views for each object instance, often with pose an-
notations (Yan et al., 2016; Wiles and Zisserman, 2017; Kato
et al., 2018; Tulsiani et al., 2018; Insafutdinov and Dosovit-
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Fig. 1 Given only unannotated 2D images as training data, our model learns (1) to reconstruct and predict the pose of 3D meshes from a single
test image, and (2) to generate new 3D mesh samples. The generative process (solid arrows) samples a Gaussian embedding, decodes this to a
3D mesh, renders the resulting mesh, and finally adds Gaussian noise. It is trained end-to-end to reconstruct input images (dashed arrows), via an
encoder network that learns to predict and disentangle shape, pose, and lighting. The renderer produces lit, shaded RGB images, allowing us to
exploit shading cues in the reconstruction loss.

skiy, 2018). In this paper, we consider the more challenging
setting where we only have access to unannotated 2D im-
ages for training, without ground-truth pose, keypoints, or
3D shape, and with a single view per object instance.

It is well known that shading provides an important cue
for 3D understanding (Horn, 1975). It allows determination
of surface orientations, if the lighting and material character-
istics are known; this has been explored in numerous works
on shape-from-shading over the years (Horn, 1975; Zhang
et al., 1999; Barron and Malik, 2015). Unlike learning-based
approaches, these methods can only reconstruct non-occluded
parts of an object, and achieving good results requires strong
priors (Barron and Malik, 2015). Conversely, existing learning-
based generation and reconstruction methods can reason over
occluded or visually-ambiguous areas, but do not leverage
shading information in their loss. Furthermore, the major-
ity use voxel grids or point clouds as an output representa-
tion. Voxels are easy to work with, but cannot model non-
axis-aligned surfaces, while point clouds do not represent
surfaces explicitly at all. In both cases, this limits the use-
fulness of shading cues. To exploit shading information in
a learning-based approach, we therefore need to move to
a different representation; a natural choice is 3D meshes.
Meshes are ubiquitous in computer graphics, and have de-
sirable properties for our task: they can represent surfaces of
arbitrary orientation and dimensions at fixed cost, and are
able to capture fine details. Thus, they avoid the visually
displeasing ‘blocky’ reconstructions that result from vox-
els. We also go beyond monochromatic light, considering
the case of coloured directional lighting; this provides even

stronger shading cues when combined with arbitrarily-oriented
mesh surfaces. Our model also explicitly reasons over the
lighting parameters, jointly with the object shape, allowing it
to exploit shading information even in cases where the light-
ing parameters are unknown—which classical shape-from-
shading methods cannot.

In this paper, we present a unified framework for both
reconstruction and generation of 3D shapes, that is trained
to model 3D meshes using only 2D supervision (Fig. 1). Our
framework is very general, and can be trained in similar set-
tings to existing models (Tulsiani et al., 2017b; Yan et al.,
2016; Wiles and Zisserman, 2017; Tulsiani et al., 2018),
while also supporting weaker supervision scenarios. It al-
lows:

– use of different mesh parameterisations, which lets us
incorporate useful modeling priors such as smoothness
or composition from primitives

– exploitation of shading cues due to monochromatic or
coloured directional lighting, letting us discover concave
structures that silhouette-based methods cannot (Gadelha
et al., 2017; Tulsiani et al., 2017b, 2018; Yan et al., 2016;
Soltani et al., 2017).

– training with varying degrees of supervision: single or
multiple views per instance, with or without ground-truth
pose annotations

To achieve this, we design a probabilistic generative model
that captures the full image formation process, whereby the
shape of a 3D mesh, its pose, and incident lighting are first
sampled independently, then a 2D rendering is produced from
these (Sect. 3). We use stochastic gradient variational Bayes
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Fig. 2 Lighting: Coloured directional lighting (a) provides strong cues
for surface orientation; white light (b) provides less information; sil-
houettes (c) provide none at all. Our model is able to exploit the shad-
ing information from coloured or white lighting.

for training (Kingma and Welling, 2014; Rezende et al., 2014)
(Sect. 4). This involves learning an inference network that
can predict 3D shape, pose and lighting from a single im-
age, with the shape placed in a canonical frame of refer-
ence, i.e. disentangled from the pose. Together, the model
plus its inference network resemble a variational autoen-
coder (Kingma and Welling, 2014) on pixels. It represents
3D shapes in a compact latent embedding space, and has
extra layers in the decoder corresponding to the mesh rep-
resentation and renderer. As we do not provide 3D supervi-
sion, the encoder and decoder must bootstrap and guide one
another during training. The decoder learns the manifold of
shapes, while at the same time the encoder learns to map
images onto this. This learning process is driven purely by
the objective of reconstructing the training images. While
this is an ambiguous task and the model cannot guarantee
to reconstruct the true shape of an object from a single im-
age, its generative capability means that it always produces
a plausible instance of the relevant class; the encoder en-
sures that this is consistent with the observed image. This
works because the generative model must learn to produce
shapes that reproject well over all training images, starting
from low-dimensional latent representations. This creates an
inductive bias towards regularity, which avoids degenerate
solutions with unrealistic shapes that could, in isolation, ex-
plain each individual training image.

In Sect. 5, we demonstrate our method on 13 diverse ob-
ject classes. This includes several highly concave classes,
which methods relying on silhouettes cannot learn correctly (Yan
et al., 2016; Gadelha et al., 2017; Tulsiani et al., 2017b,
2018). We first display samples from the distribution of shapes
learnt by our model, showing that (i) the use of meshes yields
smoother, more natural samples than those from voxel-based
methods (Gadelha et al., 2017), (ii) different mesh parame-
terisations are better suited to different object classes, and
(iii) our samples are diverse and realistic, covering multiple
modes of the training distribution. We also demonstrate that
our model learns a meaningful latent space, by showing that
interpolating between points in it yields realistic intermedi-
ate samples. We then quantitatively evaluate performance of
our method on single-view reconstruction and pose estima-
tion, showing that: (i) it learns to predict pose, and disen-
tangle it from shape, without either being given as supervi-

(a) (b) (c)

Fig. 3 Mesh parameterisations: ortho-block & full-block (assembly
from cuboidal primitives, of fixed or varying orientation) are suited to
objects consisting of compact parts (a-b); subdivision (per-vertex de-
formation of a subdivided cube) is suited to complex continuous sur-
faces (c).

sion; (ii) exploiting information from shading improves re-
sults over using silhouettes in the reconstruction loss, even
when the model must learn to estimate the lighting parame-
ters and disentangle them from surface normals; (iii) when
using a standard single white light, our model outperforms
state-of-the-art 2D-supervised methods (Kato et al., 2018),
both with and without pose supervision, thanks to exploiting
shading cues; (iv) performance improves further when us-
ing multiple coloured lights, even approaching that of state-
of-the-art 3D-supervised methods (Fan et al., 2017; Richter
and Roth, 2018). Finally, we evaluate the impact of design
choices such as different mesh parameterisations and latent
space dimensionalities, showing which choices work well
for different object classes.

A preliminary version of this work appeared as Hender-
son and Ferrari (2018). That earlier version assumed fixed,
known lighting parameters rather than explicitly reasoning
over them; also here we present a much more extensive ex-
perimental evaluation.

2 Related Work

2.1 Learning single-image 3D reconstruction

In the last three years, there has been a surge of interest in
single-image 3D reconstruction; this has been enabled both
by the growing maturity of deep learning techniques, and by
the availability of large datasets of 3D shapes (Chang et al.,
2015; Wu et al., 2015). Among such methods, we differ-
entiate between those requiring full 3D supervision (i.e. 3D
shapes paired with images), and those that need only weaker
2D supervision (e.g. pose annotations); our work here falls
into the second category.

3D-supervised methods. Choy et al. (2016) apply a CNN
to the input image, then pass the resulting features to a 3D
deconvolutional network, that maps them to to occupancies
of a 323 voxel grid. Girdhar et al. (2016) and Wu et al. (2016)
proceed similarly, but pre-train a model to auto-encode or
generate 3D shapes respectively, and regress images to the
latent features of this model. Instead of directly producing
voxels, Soltani et al. (2017), Shin et al. (2018) and Richter
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Fig. 4 (a) We parameterise the object pose relative to the camera by
the azimuth angle θ , and rotate the lights around the object as a group
according to a second azimuth angle λ . (b) To avoid degenerate so-
lutions, we discretise θ into coarse and fine components, with θcoarse
categorically distributed over R bins, and θfine specifying a small offset
relative to this. For example, to represent the azimuth indicated by the
pink line, θcoarse = 3 and θfine = −18◦. The encoder network outputs
softmax logits ρ for a categorical variational distribution over θcoarse,
and the mean ξ and standard deviation ζ of a Gaussian variational dis-
tribution over θfine, with ξ bounded to the range (−π/R, π/R).

and Roth (2018) output multiple depth-maps and/or silhou-
ettes, from known (fixed) viewpoints; these are subsequently
fused if a voxel reconstruction is required. Fan et al. (2017)
and Mandikal et al. (2018) generate point clouds as the out-
put, with networks and losses specialised to their order-invariant
structure. Like ours, the concurrent work of Wang et al. (2018)
predicts meshes, but parameterises them differently to us.
Tulsiani et al. (2017a) and Niu et al. (2018) both learn to
map images to sets of cuboidal primitives, of fixed and vari-
able cardinality respectively. Finally, Gwak et al. (2017) and
Zhu et al. (2017) present methods with slightly weaker re-
quirements on ground-truth. As in the previous works, they
require large numbers of 3D shapes and images; however,
these do not need to be paired with each other. Instead, the
images are annotated only with silhouettes.

2D-supervised methods. A few recent learning-based re-
construction techniques do not rely on 3D ground-truth; these
are the closest in spirit to our own. They typically work
by passing input images through a CNN, which predicts
a 3D representation, which is then rendered to form a re-
constructed 2D silhouette; the loss is defined to minimise
the difference between the reconstructed and original sil-
houettes. This reliance on silhouettes means they cannot ex-
ploit shading and cannot learn to reconstruct concave object
classes—in contrast to our approach. Moreover, all these
methods require stronger supervision than our own—they
must be trained with ground-truth pose or keypoint annota-
tions, and/or multiple views of each instance presented to-
gether during training.

Rezende et al. (2016) briefly discuss single-image recon-
struction using a conditional generative model over meshes.
This models radial offsets to vertices of a spherical base
mesh, conditioning on an input image. The model is trained
in a variational framework to maximise the reconstructed

pixel likelihood. It is demonstrated only on simple shapes
such as cubes and cylinders.

Yan et al. (2016) present a method that takes single im-
age as input, and yields a voxel reconstruction. This is trained
to predict voxels that reproject correctly to the input pix-
els, assuming the object poses for the training images are
known. The voxels are projected by computing a max op-
eration along rays cast from each pixel into the voxel grid,
at poses matching the input images. The training objective
is then to maximise the IOU between these projected sil-
houettes and the silhouettes of the original images. Kato
et al. (2018) present a very similar method, but using meshes
instead of voxels as the output representation. It is again
trained using the silhouette IOU as the loss, but also adds a
smoothness regularisation term, penalising sharply creased
edges. Wiles and Zisserman (2017) propose a method that
takes silhouette images as input, and produces rotated sil-
houettes as output; the input and output poses are provided.
To generate the rotated silhouettes, they predict voxels in 3D
space, and project them by a max operation along rays.

Tulsiani et al. (2017b) also regress a voxel grid from
a single image; however, the values in this voxel grid are
treated as occupancy probabilities, which allows use of prob-
abilistic ray termination (Broadhurst et al., 2001) to enforce
consistency with a silhouette or depth map. Two concurrent
works to ours, Tulsiani et al. (2018) and Insafutdinov and
Dosovitskiy (2018), extend this approach to the case where
pose is not given at training time. To disentangle shape and
pose, they require that multiple views of each object in-
stance be presented together during training; the model is
then trained to reconstruct the silhouette for each view using
its own predicted pose, but the shape predicted from some
other view. Yang et al. (2018) use the same principle to dis-
entangle shape and pose, but assume that a small number of
images are annotated with poses, which improves the accu-
racy significantly.

Vicente et al. (2014) jointly reconstruct thousands of
object instances in the PASCAL VOC 2012 dataset using
keypoint and silhouette annotations, but without learning a
model that can be applied to unseen images. Kar et al. (2015)
train a CNN to predict keypoints, pose, and silhouette from
an input image, and then optimise the parameters of a de-
formable model to fit the resulting estimates. Concurrently
with our work, Kanazawa et al. (2018) present a method that
takes a single image as input, and produces a textured 3D
mesh as output. The mesh is parameterised by offsets to the
vertices of a learnt mean shape. These three methods all re-
quire silhouette and keypoint annotations on the training im-
ages, but only a single view of each instance.

Novotny et al. (2017) learn to perform single-image re-
construction using videos as supervision. Classical multi-
view stereo methods are used to reconstruct the object in-
stance in each video, and the reconstructions are used as
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ground-truth to train a regression model mapping images to
3D shapes.

2.2 Generative models of 3D shape

The last three years have also seen increasing interest in
deep generative models of 3D shapes. Again, these must typ-
ically be trained using large datasets of 3D shapes, while just
one work requires only images (Gadelha et al., 2017).

3D-supervised methods. Wu et al. (2015) and Xie et al.
(2018) train deep energy-based models on voxel grids; Huang
et al. (2015) train one on surface points of 3D shapes, jointly
with a decomposition into parts. Wu et al. (2016) and Zhu
et al. (2018) present generative adversarial networks (GANs;
Goodfellow et al., 2014) that directly model voxels using 3D
convolutions; Zhu et al. (2018) also fine-tune theirs using
2D renderings. Rezende et al. (2016) and Balashova et al.
(2018) both describe models of voxels, based on the varia-
tional autoencoder (VAE; Kingma and Welling, 2014). Nash
and Williams (2017) and Gadelha et al. (2018) model point
clouds, using different VAE-based formulations. Achliop-
tas et al. (2018) train an autoencoder for dimensionality re-
duction of point clouds, then a GAN on its embeddings. Li
et al. (2017) and Zou et al. (2017) model shapes as assem-
bled from cuboidal primitives; Li et al. (2017) also add de-
tail by modelling voxels within each primitive. Tan et al.
(2018) present a VAE over parameters of meshes. Calcu-
lating the actual vertex locations from these parameters re-
quires a further energy-based optimisation, separate to their
model. Their method is not directly applicable to datasets
with varying mesh topology, including ShapeNet and Mod-
elNet.

2D-supervised methods. Soltani et al. (2017) train a VAE
over groups of silhouettes from a set of known viewpoints;
these may be fused to give a true 3D shape as a post-processing
stage, separate to the probabilistic model. The only prior
work that learns a true generative model of 3D shapes given
just 2D images is Gadelha et al. (2017); this is therefore the
most similar in spirit to our own. They use a GAN over vox-
els; these are projected to images by a simple max opera-
tion along rays, to give silhouettes. A discriminator network
ensures that projections of sampled voxels are indistinguish-
able from projections of ground-truth data. This method does
not require pose annotations, but they restrict poses to a set
of just eight predefined viewpoints. In contrast to our work,
this method cannot learn concave shapes, due to its reliance
on silhouettes. Moreover, like other voxel-based methods,
it cannot output smooth, arbitrarily-oriented surfaces. Yang
et al. (2018) apply this model as a prior for single-image
reconstruction, but they require multiple views per instance
during training.

3 Generative Model

Our goal is to build a probabilistic generative model of 3D
meshes for a given object class. For this to be trainable with
2D supervision, we cast the entire image-formation process
as a directed model (Fig. 1). We assume that the content
of an image can be explained by three independent latent
components—the shape of the mesh, its pose relative to the
camera, and the lighting. These are modelled by three low-
dimensional random variables, z, θ , and λ respectively. The
joint distribution over these and the resulting pixels x fac-
torises as P(x, z, θ , λ ) = P(z)P(θ)P(λ )P(x |z, θ , λ ).

Following Gadelha et al. (2017), Yan et al. (2016), Tul-
siani et al. (2017b), and Wiles and Zisserman (2017), we as-
sume that the pose θ is parameterised by just the azimuth an-
gle, with θ ∼ Uniform(−π,π) (Fig. 4a, bottom). The cam-
era is then placed at fixed distance and elevation relative to
the object. We similarly take λ to be a single azimuth angle
with uniform distribution, which specifies how a predefined
set of directional light sources are to be rotated around the
origin (Fig. 4a, top). The number of lights, their colours, el-
evations, and relative azimuths are kept fixed. We are free to
choose these; our experiments include tri-directional coloured
lighting, and a single white directional light source plus an
ambient component.

Following recent works on deep latent variable mod-
els (Kingma and Welling, 2014; Goodfellow et al., 2014),
we assume that the embedding vector z is drawn from a
standard isotropic Gaussian, and then transformed by a de-
terministic decoder network, Fφ , parameterised by weights
φ which are to be learnt (Appendix A details the architec-
ture of this network). This produces the mesh parameters
Π = Fφ (z). Intuitively, the decoder network Fφ transforms
and entangles the dimensions of z such that all values in the
latent space map to plausible values for Π , even if these lie
on a highly nonlinear manifold. Note that our approach con-
trasts with previous models that directly output pixels (Kingma
and Welling, 2014; Goodfellow et al., 2014) or voxels (Wu
et al., 2016; Gadelha et al., 2017; Zhu et al., 2018; Balashova
et al., 2018) from a decoder network.

We use Π as inputs to a fixed mesh parameterisation
function M(Π), which yields vertices vobject of triangles defin-
ing the shape of the object in 3D space, in a canonical pose
(different options for M are described below). The vertices
are transformed into camera space according to the pose θ ,
by a fixed function T : vcamera = T (vobject, θ). They are then
rendered into an RGB image I0 = G (vcamera, λ ) by a ras-
teriser G using Gouraud shading (Gouraud, 1971) and Lam-
bertian surface reflectance (Lambert, 1760).

The final observed pixel values x are modelled as inde-
pendent Gaussian random variables, with means equal to the
values in an L-level Gaussian pyramid (Burt and Adelson,
1983), whose base level equals I0, and whose Lth level has
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Fig. 5 Samples from our model for the ten most frequent classes in ShapeNet in order of decreasing frequency, plus three other interesting classes.
Note the diversity and realism of our samples, which faithfully capture multimodal shape distributions, e.g. both straight and right-angled sofas,
boats with and without sails, and straight- and delta-wing aeroplanes. We successfully learn models for the highly concave classes sofa, bathtub,
pot, and jar, enabled by the fact that we exploit shading cues during training. Experimental setting: subdivision, fixed colour lighting, shading loss.
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Fig. 6 Qualitative examples of reconstructions for different object classes. Each group of three images shows (i) ShapeNet ground-truth; (ii) our
reconstruction; (iii) reconstruction placed in a canonical pose, with the different viewpoint revealing hidden parts of the shape. Experimental
setting: subdivision, single-view training, fixed colour lighting, shading loss.
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smallest dimension equal to one:

Pφ (x |z, θ , λ ) = ∏
l

Pφ (xl |z, θ , λ ) (1)

xl ∼ Normal
(

Il ,
ε

2l

)
(2)

I0 = G (T (M(Fφ (z)), θ), λ ) (3)

Il+1 = Il ∗ kG (4)

where kG is a small Gaussian kernel, ε is the noise magni-
tude at the base scale, and ∗ denotes convolution with stride
two. We use a multi-scale pyramid instead of just the raw
pixel values to ensure that, during training, there will be gra-
dient forces over long distances in the image, thus avoiding
bad local minima where the reconstruction is far from the
input.

Mesh parameterisations. After the decoder network has
transformed the latent embedding z into the mesh parame-
ters Π , these are converted to actual 3D vertices using a sim-
ple, non-learnt mesh-parameterisation function M. One pos-
sible choice for M is the identity function, in which case the
decoder network directly outputs vertex locations. However,
initial experiments showed that this does not work well: it
produces very irregular meshes with large numbers of in-
tersecting triangles. Conversely, using a more sophisticated
form for M enforces regularity of the mesh. We use three
different parameterisations in our experiments.

In our first parameterisation, Π specifies the locations
and scales of a fixed number of axis-aligned cuboidal prim-
itives (Fig. 3a), from which the mesh is assembled (Zou
et al., 2017; Tulsiani et al., 2017a). Changing Π can produce
configurations with different topologies, depending which
blocks touch or overlap, but all surfaces will always be axis-
aligned. The scale and location of each primitive are repre-
sented by 3D vectors, resulting in a total of six parameters
per primitive. In our experiments we call this ortho-block.

Our second parameterisation is strictly more powerful
than the first: we still assemble the mesh from cuboidal prim-
itives, but now associate each with a rotation, in addition to
its location and scale. Each rotation is parameterised as three
Euler angles, yielding a total of nine parameters per primi-
tive. In our experiments we call this full-block (Fig. 3b).

The above parameterisations are naturally suited to ob-
jects composed of compact parts, but cannot represent com-
plex continuous surfaces. For these, we define a third pa-
rameterisation, subdivision (Fig. 3c). This parameterisation
is based on a single cuboid, centred at the origin; the edges
and faces of the cuboid are subdivided several times along
each axis. Then, Π specifies a list of 3D displacements, one
per vertex, which deform the subdivided cube into the re-
quired shape. In practice, we subdivide each edge into four
segments, resulting in 98 vertices, hence 294 parameters.

4 Variational Training

We wish to learn the parameters of our model from a training
set of 2D images of objects of a single class. More precisely,
we assume access to a set of images {x(i)}, each showing an
object with unknown shape, at an unknown pose, under un-
known lighting. Note that we do not require that there are
multiple views of each object (in contrast with Yan et al.
(2016) and Tulsiani et al. (2018)), nor that the object poses
are given as supervision (in contrast with Yan et al. (2016),
Tulsiani et al. (2017b), Wiles and Zisserman (2017), and
Kato et al. (2018)).

We seek to maximise the marginal log-likelihood of the
training set, which is given by ∑i logPφ (x(i)), with respect
to φ . For each image, we have

logPφ (x(i)) = log
∫

z,θ ,λ
Pφ (x(i) |z,θ ,λ )P(z)P(θ)P(λ )dzdθ dλ

(5)

Unfortunately this is intractable, due to the integral over
the latent variables z (shape), θ (pose), and λ (lighting).
Hence, we use amortised variational inference, in the form
of stochastic gradient variational Bayes (Kingma and Welling,
2014; Rezende et al., 2014). This introduces an approxi-
mate posterior Qω(z,θ ,λ |x), parameterised by some ω that
we learn jointly with the model parameters φ . Intuitively, Q
maps an image x to a distribution over likely values of the
latent variables z, θ , and λ . Instead of the log-likelihood (5),
we then maximise the evidence lower bound (ELBO):

E
z,θ ,λ∼Qω (z,θ ,λ |x(i))

[
logPφ (x(i) |z, θ , λ )

]
−KL

[
Qω(z, θ , λ |x(i))

∣∣∣∣∣∣P(z)P(θ)P(λ )]≤ logPφ (x(i))
(6)

This lower-bound on the log-likelihood can be evaluated ef-
ficiently, as the necessary expectation is now with respect
to Q, for which we are free to choose a tractable form. The
expectation can then be approximated using a single sample.

We let Q be a mean-field approximation, i.e. given by a
product of independent variational distributions:

Qω(z,θ ,λ |x) = Qω(z |x)Qω(θ |x)Qω(λ |x) (7)

The parameters of these distributions are produced by an
encoder network, encω(x), which takes the image x as in-
put. For this encoder network we use a small CNN with ar-
chitecture similar to Wiles and Zisserman (2017) (see Ap-
pendix A). We now describe the form of the variational dis-
tribution for each of the variables z, θ , and λ .

Shape. For the shape embedding z, the variational posterior
distribution Qω(z |x) is a multivariate Gaussian with diago-
nal covariance. The mean and variance of each latent dimen-
sion are produced by the encoder network. When training
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Fig. 7 Samples for four object classes, using our three different mesh parameterisations. ortho-block and full-block perform well for sofas and
reasonably for chairs, but are less well-suited to aeroplanes and cars, which are naturally represented as smooth surfaces. subdivision gives good
results for all four object classes.

with multiple views per instance, we apply the encoder net-
work to each image separately, then calculate the final shape
embedding z by max-pooling each dimension over all views.

Pose. For the pose θ , we could similarly use a Gaussian
posterior. However, many objects are roughly symmetric with
respect to rotation, and so the true posterior is typically multi-
modal. We capture this multi-modality by decomposing the
rotation into coarse and fine parts (Mousavian et al., 2017):
an integer random variable θcoarse that chooses from Rθ ro-
tation bins, and a small Gaussian offset θfine relative to this
(Fig. 4b):

θ =−π +θcoarse
2π

Rθ

+θfine (8)

We apply this transformation in both the generative P(θ)
and variational Qω(θ), giving

P(θcoarse = r) = 1/Rθ (9)

P(θfine) = Normal(θfine |0, π/Rθ ) (10)

Qω

(
θcoarse = r

∣∣∣x(i))= ρ
θ
r

(
x(i)
)

(11)

Qω(θfine) = Normal
(

θfine

∣∣∣ξ θ (x(i)), ζ
θ (x(i))

)
(12)

where the variational parameters ρθ
r ,ξ

θ ,ζ θ for image x(i)
are again estimated by the encoder network encω(x(i)). Specif-
ically, the encoder uses a softmax output to parameterise ρθ ,
and restricts ξ θ to lie in the range (−π/Rθ , π/Rθ ), ensur-
ing that the fine rotation is indeed a small perturbation, so
the model must correctly use it in conjunction with θcoarse.

Provided Rθ is sufficiently small, we can integrate di-
rectly with respect to θcoarse when evaluating (6), i.e. sum
over all possible rotations. While this allows our training
process to reason over different poses, it is still prone to pre-
dicting the same pose θ for every image; clearly this does

not correspond to the prior on θ given by (9). The model
is therefore relying on the shape embedding z to model all
variability, rather than disentangling shape and pose. The
ELBO (6) does include a KL-divergence term that should
encourage latent variables to match their prior. However, it
does not have a useful effect for θcoarse: minimising the KL
divergence from a uniform distribution for each sample in-
dividually corresponds to independently minimising all the
probabilities Qω(θcoarse), which does not encourage unifor-
mity of the full distribution. The effect we desire is to match
the aggregated posterior distribution

〈
Qω(θ |x(i))

〉
i

to the

prior P(θ), where 〈 · 〉i is the empirical mean over the train-
ing set. As θcoarse follows a categorical distribution in both
generative and variational models, we can directly minimise
the L1 distance between the aggregated posterior and the
prior

Rθ

∑
r

∣∣∣∣〈Qω

(
θcoarse = r |x(i)

)〉
i
−P(θcoarse = r)

∣∣∣∣= Rθ

∑
r

∣∣∣∣〈ρ
θ
r (x

(i))
〉

i
− 1

Rθ

∣∣∣∣
(13)

We use this term in place of KL
[
Q(θcoarse |x(i))

∣∣∣∣∣∣P(θcoarse)
]

in our loss, approximating the empirical mean with a single
minibatch.

Lighting. For the lighting angle λ , we perform the same
decomposition into coarse and fine components as for θ ,
giving new variables λcoarse and λfine, with λcoarse selecting
from among Rλ bins. Analogously to pose, λcoarse has a cat-
egorical variational distribution parameterised by a softmax
output ρλ from the encoder, and λfine has a Gaussian vari-
ational distribution with parameters ξ λ and ζ λ . Again, we
integrate over λcoarse, so the training process reasons over
many possible lighting angles for each image, increasing the
predicted probability of the one giving the best reconstruc-
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Fig. 8 Qualitative examples of reconstructions, using different mesh parameterisations. Each row of five images shows (i) ShapeNet ground-truth;
(ii) our reconstruction with subdivision parameterisation; (iii) reconstruction placed in a canonical pose; (iv) our reconstruction with blocks; (v)
canonical-pose reconstruction. Experimental setting: single-view training, fixed colour lighting, shading loss.

tion. We also regularise the aggregated posterior distribution
of λcoarse towards a uniform distribution.

Loss. Our final loss function for a minibatch B is then
given by

Rθ

∑
rθ

Rλ

∑
rλ

{
−
〈

E
z,θfine,λfine∼Qω

[
logPφ

(
x(i)
∣∣∣z, θcoarse = rθ , θfine, λcoarse = rλ , λfine

)
]〉

i∈B
ρ

θ
rθ

(
x(i)
)

ρ
λ
rλ

(
x(i)
)}

+α

Rθ

∑
r

{∣∣∣∣〈ρ
θ
r

(
x(i)
)〉

i∈B
− 1

Rθ

∣∣∣∣
}

+α

Rλ

∑
r

{∣∣∣∣〈ρ
λ
r

(
x(i)
)〉

i∈B
− 1

Rλ

∣∣∣∣
}

+β

〈
KL
[
Qω

(
z,θfine,λfine

∣∣∣x(i)) ∣∣∣∣∣∣P(z)P(θfine)P(λfine)
]〉

i∈B
(14)

where β increases the relative weight of the KL term as in
Higgins et al. (2017), and α controls the strength of the
prior-matching terms for pose and lighting. We minimise
(14) with respect to φ and ω using ADAM (Kingma and
Ba, 2015), applying the reparameterisation trick to handle
the Gaussian random variables (Kingma and Welling, 2014;
Rezende et al., 2014).

Differentiable rendering. Note that optimising (14) by
gradient descent requires differentiating through the mesh-
rendering operation G used to calculate Pφ (x |z, θ , λ ), to
find the derivative of the pixels with respect to the vertex

locations and colours. While computing exact derivatives
of G is very expensive, Loper and Black (2014) describe
an efficient approximation. We employ a similar technique
here, and have made our TensorFlow implementation pub-
licly available1.

5 Experiments

We follow recent works (Gadelha et al., 2017; Yan et al.,
2016; Tulsiani et al., 2017b; Fan et al., 2017; Kato et al.,
2018; Tulsiani et al., 2018; Richter and Roth, 2018; Yang
et al., 2018) and evaluate our approach using the ShapeNet
dataset (Chang et al., 2015). Using synthetic data has two
advantages: it allows controlled experiments modifying light-
ing and other parameters, and it lets us evaluate the recon-
struction accuracy using the ground-truth 3D shapes.

We begin by demonstrating that our method successfully
learns to generate and reconstruct 13 different object classes
(Sect. 5.1). These include the top ten most frequent classes
of ShapeNet, plus three others (bathtub, jar, and pot) that we
select because they are smooth and concave, meaning that
prior methods using voxels and silhouettes cannot learn and
represent them faithfully, as shading information is needed
to handle them correctly.

We then rigorously evaluate the performance of our model
in different settings, focusing on four classes (aeroplane,
car, chair, and sofa). The first three are used in Yan et al.

1 DIRT: a fast Differentiable Renderer for TensorFlow, available at
https://github.com/pmh47/dirt
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Table 1 Reconstruction and pose estimation performance for the ten
most-frequent classes in ShapeNet (first ten rows), plus three smooth,
concave classes that methods based on voxels and silhouettes cannot
handle (last three rows). Metrics: iou measures shape reconstruction
accuracy when pose supervision is not given; err and acc measure pose
estimation in this case (which requires the model to disentangle shape
and pose); iou |θ measures shape reconstruction accuracy when pose
supervision is given during training. Note that table, lamp, pot, and jar
all typically have rotational symmetry, and as such, it is not possible
to define an unambiguous reference frame; this results in high values
for err and low for acc. Experimental setting: subdivision, single-view
training, fixed colour lighting, shading loss.

iou err acc iou |θ
(shape) (pose) (pose) (shape)

table 0.44 89.3 0.39 0.49
chair 0.39 7.9 0.65 0.51
airplane 0.55 1.4 0.90 0.59
car 0.77 4.7 0.84 0.82
sofa 0.59 6.5 0.88 0.71
rifle 0.54 9.0 0.68 0.61
lamp 0.40 87.7 0.19 0.41
vessel 0.48 9.8 0.59 0.58
bench 0.35 5.1 0.71 0.44
loudspeaker 0.41 81.7 0.28 0.54

bathtub 0.54 9.7 0.54 0.57
pot 0.49 90.4 0.20 0.53
jar 0.49 93.1 0.16 0.52

(2016), Tulsiani et al. (2017b), Kato et al. (2018), and Tul-
siani et al. (2018), while the fourth is a highly concave class
that is hard to handle by silhouette-based approaches. We
conduct experiments varying the following factors:

– Mesh parameterisations (Sect. 5.2): We evaluate the
three parameterisations described in Sect. 3: ortho-block,
full-block, and subdivision.

– Single white light vs. three coloured lights (Sect. 5.3):
Unlike previous works using silhouettes (Sect. 2), our
method is able to exploit shading in the training images.
We test in two settings: (i) illumination by three coloured
directional lights (colour); and (ii) illumination by one
white directional light plus a white ambient component
(white).

– Fixed vs. varying lighting (Sect. 5.3): The variable λ

represents a rotation of all the lights together around the
vertical axis (Sect. 3). We conduct experiments in two
settings: (i) λ is kept fixed across all training and test im-
ages, and is known to the generative model (fixed); and
(ii) λ is chosen randomly for each training/test image,
and is not provided to the model (varying). In the latter
setting, the model must learn to disentangle the effects
of lighting angle and surface orientation on the observed
shading.

– Silhouette vs. shading in the loss (Sect. 5.3): We typi-
cally calculate the reconstruction loss (pixel log-likelihood)
over the RGB shaded image (shading), but for compari-
son with 2D-supervised silhouette-based methods (Sect. 2)

we also experiment with using only the silhouette in the
loss (silhouette), disregarding differences in shading be-
tween the input and reconstructed pixels.

– Latent space dimensionality (Sect. 5.4): We experiment
with different sizes for the latent shape embedding z,
which affects the representational power of our model.
We found that 12 dimensions gave good results in initial
experiments, and use this value for all experiments apart
from Sect. 5.4, where we evaluate its impact.

– Multiple views (Sect. 5.5): Yan et al. (2016), Wiles and
Zisserman (2017), Tulsiani et al. (2018) and Yang et al.
(2018) require that multiple views of each instance are
presented together in each training batch, and Tulsiani
et al. (2017b) also focus on this setting. Our model does
not require this, but for comparison we include results
with three views per instance at training time, and either
one or three at test time.

– Pose supervision: Most previous works that train for 3D
reconstruction with 2D supervision require the ground-
truth pose of each training instance (Yan et al., 2016;
Wiles and Zisserman, 2017; Tulsiani et al., 2017b). While
our method does not need this, we evaluate whether it
can benefit from it, in each of the settings described above
(we report these results in their corresponding sections).

Finally, we compare the performance of our model to sev-
eral prior and concurrent works on generation and recon-
struction, using various degrees of supervision (Sect. 5.6).

Evaluation metrics. We benchmark our reconstruction and
pose estimation accuracy on a held-out test set, following the
protocol of Yan et al. (2016), where each object is presented
at 24 different poses, and statistics are aggregated across ob-
jects and poses. We use the following measures:

– iou: to measure the shape reconstruction error, we calcu-
late the mean intersection-over-union between the pre-
dicted and ground-truth meshes; this follows recent works
on reconstruction (e.g. Yan et al., 2016; Tulsiani et al.,
2017b). For this we voxelise both meshes at a resolution
of 323

– err: to measure the pose estimation error, we calculate
the median error in degrees of predicted rotations

– acc: again to evaluate pose estimation, we measure the
fraction of instances whose predicted rotation is within
30◦ of the ground-truth rotation.

Note that the metrics err and acc are used by Tulsiani et al.
(2018) to evaluate pose estimation in a similar setting to
ours.

Training minibatches. During training, we construct each
minibatch by randomly sampling 128 meshes from the rel-
evant ShapeNet class uniformly with replacement. For each
selected mesh, we render a single image, using a pose sam-
pled from Uniform(−π, π) (and also sampling a lighting
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Table 2 Reconstruction performance for four classes, with three different mesh parameterisations (Sect. 3). For each class, the first three columns
are in the default setting of no pose supervision and correspond to the metrics in Sect. 5; iou |θ is the IOU when trained with pose supervision.
Higher is better for iou and acc; lower is better for err. Experimental setting: single-view training, fixed colour lighting, shading loss.

car chair aeroplane sofa

iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ
ortho-block 0.72 7.6 0.90 0.78 0.41 9.2 0.69 0.49 0.30 7.9 0.73 0.24 0.59 7.3 0.94 0.74
full-block 0.54 6.5 0.82 0.63 0.46 4.6 0.69 0.51 0.55 1.7 0.90 0.57 0.39 9.1 0.70 0.68
subdivision 0.77 4.7 0.84 0.82 0.39 7.9 0.65 0.51 0.55 1.4 0.90 0.59 0.59 6.5 0.88 0.71

Table 3 Reconstruction performance with different lighting and loss. colour indicates three coloured directional lights with shading loss; white
indicates a single white directional light plus white ambient, with shading loss; col+sil indicates coloured lighting with only the silhouette used
in the loss. Our model can exploit the extra information gained by considering shading in the loss, and coloured directional lighting helps further.
Experimental setting: single-view training, best mesh parameterisations from Table 2, fixed lighting rotation.

car chair aeroplane sofa

iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ
colour 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51 0.55 1.4 0.90 0.59 0.59 7.3 0.94 0.74
white 0.58 13.8 0.82 0.81 0.31 37.7 0.43 0.42 0.42 7.7 0.85 0.54 0.51 56.1 0.49 0.71
col+sil 0.46 65.2 0.29 0.64 0.28 51.7 0.35 0.48 0.20 17.8 0.57 0.47 0.27 89.8 0.15 0.57

angle for experiments with varying lighting). Only these im-
ages are used to train the model, not the meshes themselves.
In experiments using multiple views, we instead sample 64
meshes and three poses per mesh, and correspondingly ren-
der three images.

5.1 Generating and reconstructing diverse object classes

We train a separate model for each of the 13 object classes
mentioned above, using subdivision parameterisation. Sam-
ples generated from these models are shown in Fig. 5. We
see that the sampled shapes are realistic, and the models
have learnt a prior that encompasses the space of valid shapes
for each class. Moreover, the samples are diverse: the mod-
els generate various different styles for each class. For ex-
ample, for sofa, both straight and right-angled (modular)
designs are sampled; for aeroplane, both civilian airliners
and military (delta-wing) styles are sampled; for pot, square,
round, and elongated, forms are sampled; and, for vessel,
boats both with and without sails are sampled. Note also
that our samples incorporate smoothly curved surfaces (e.g.
car, jar) and slanted edges (e.g. aeroplane), which voxel-
based methods cannot represent (Sect. 5.6 gives a detailed
comparison with one such method (Gadelha et al., 2017)).

Reconstruction results are given in Table 1, with quali-
tative results in Fig. 6. We use fixed colour lighting, shading
loss, single-view training, and no pose supervision (columns
iou, err, acc); we also report iou when using pose supervi-
sion in column iou |θ . We see that the highest reconstruction
accuracy (iou) is achieved for cars, sofas, and aeroplanes,
and the lowest for benches, chairs, and lamps. Providing the
ground-truth poses as supervision improves reconstruction
performance in all cases (iou |θ ). Note that performance for

the concave classes sofa, bathtub, pot, and jar is compara-
ble or higher than several non-concave classes, indicating
that our model can indeed learn them by exploiting shading
cues.

Note that in almost all cases, the reconstructed image is
very close to the input (Fig. 6); thus, the model has learnt
to reconstruct pixels successfully. Moreover, even when the
input is particularly ambiguous due to self-occlusion (e.g.
the rightmost car and sofa examples), we see that the model
infers a plausible completion of the hidden part of the shape
(visible in the third column).

The low values of the pose estimation error err (and cor-
responding high values of acc) for most classes indicate that
the model has indeed learnt to disentangle pose from shape,
without supervision. This is noteworthy given the model has
seen only unannotated 2D images with arbitrary poses —
disentanglement of these factors presumably arises because
it is easier for the model to learn to reconstruct in a canon-
ical reference frame, given that it is encouraged by our loss
to predict diverse poses. While the pose estimation appears
inaccurate for table, lamp, pot, and jar note that these classes
exhibit rotational symmetry about the vertical axis. Hence,
it is not possible to define (nor indeed to learn) a single, un-
ambiguous canonical frame of reference for them.

5.2 Comparing mesh parameterisations

We now compare the three mesh parameterisations of Sect. 3,
considering the four classes car, chair, aeroplane, and sofa.
We show qualitative results for generation (Fig. 7) and re-
construction (Fig. 8); Table 2 gives quantitative results for
reconstruction. Again we use fixed colour lighting, shading
loss and single-view training.
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Table 4 Reconstruction performance with fixed and varying lighting. In the varying case, our model must learn to predict the lighting angle,
simultaneously with exploiting the shading cues it provides. Experimental setting: single-view training, best mesh parameterisations from Table 2,
shading loss.

car chair aeroplane sofa

iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ
fixed white 0.58 13.8 0.82 0.81 0.31 37.7 0.43 0.42 0.42 7.7 0.85 0.54 0.51 56.1 0.49 0.71
varying white 0.48 23.6 0.58 0.79 0.31 31.1 0.47 0.43 0.40 2.5 0.82 0.55 0.47 60.7 0.47 0.71
fixed colour 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51 0.55 1.4 0.90 0.59 0.59 7.3 0.94 0.74
varying colour 0.60 10.5 0.82 0.79 0.32 36.5 0.42 0.46 0.52 2.4 0.89 0.59 0.69 7.5 0.96 0.73

Table 5 Reconstruction performance with multiple views at train/test
time. Our model is able to exploit the extra information gained through
multiple views, and can benefit even when testing with a single view.
Experimental setting: best mesh parameterisations from Table 2, fixed
colour lighting, shading loss.

views car chair

train test iou err acc iou |θ iou err acc iou |θ
1 1 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51
3 1 0.82 1.3 0.94 0.83 0.50 2.1 0.83 0.52
3 3 0.83 1.7 0.94 0.84 0.53 3.1 0.80 0.56

We see that different parameterisations are better suited
to different classes, in line with our expectations. Cars have
smoothly curved edges, and are well-approximated by a sin-
gle simply-connected surface; hence, subdivision performs
well. Chairs vary in topology (e.g. the back may be solid
or slatted) and sometimes have non-axis-aligned surfaces,
so the flexible full-block parameterisation performs best.
Aeroplanes have one dominant topology and include non-
axis-aligned surfaces; both full-block and subdivision per-
form well here. Sofas often consist of axis-aligned blocks,
so the ortho-block parameterisation is expressive enough to
model them. We hypothesise that it performs better than the
more flexible full-block as it is easier for training to find
a good solution in a more restricted representation space.
This is effectively a form of regularisation. Overall, the best
reconstruction performance is achieved for cars, which ac-
cords with Tulsiani et al. (2017b), Yan et al. (2016), and Fan
et al. (2017). On average over the four classes, the best pa-
rameterisation is subdivision, both with and without pose
supervision.

5.3 Lighting

Fixed lighting rotation. Table 3 shows how reconstruc-
tion performance varies with the different choices of light-
ing, colour and white, using shading loss. Coloured direc-
tional lighting provides more information during training
than white lighting, and the results are correspondingly bet-
ter.

We also show performance with silhouette loss for coloured
light. This considers just the silhouette in the reconstruction

Fig. 9 Effect of varying the dimensionality of the latent embedding
vector z on reconstruction performance (iou |θ ). Experimental setting:
subdivision, fixed colour lighting, shading loss.

loss, instead of the shaded pixels. To implement it, we dif-
ferentiably binarise both our reconstructed pixels I0 and the
ground-truth pixels x(i) prior to calculating the reconstruc-
tion loss. Specifically, we transform each pixel p into p/(p+
η), where η is a small constant. This performs significantly
worse than with shading in the loss, in spite of the input
images being identical. Thus, back-propagating information
from shading through the renderer does indeed help with
learning—it is not merely that colour images contain more
information for the encoder network. As in the previous ex-
periment, we see that pose supervision helps the model (col-
umn iou |θ vs. iou). In particular, only with pose supervision
are silhouettes informative enough for the model to learn a
canonical frame of reference reliably, as evidenced by the
high median rotation errors without (column err).

Varying lighting rotation. We have shown that shading
cues are helpful for training our model. We now evaluate
whether it can still learn successfully when the lighting an-
gle varies across training samples (varying). Table 4 shows
that our method can indeed reconstruct shapes even in this
case. When the object pose is given as supervision (col-
umn iou |θ ), the reconstruction accuracy is on average only
slightly lower than in the case of fixed, known lighting. Thus,
the encoder successfully learns to disentangle the lighting
angle from the surface normal orientation, while still ex-
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Table 6 Reconstruction performance (iou |θ ) in a setting matching Yan et al. (2016), Tulsiani et al. (2017b), Kato et al. (2018), and Yang et al.
(2018), which are silhouette-based methods trained with pose supervision and multiple views (to be precise, Yang et al. (2018) provide pose
annotations for 50% of all training images). PTN, our images is running the unmodified public code of Yan et al. (2016) with their normal
silhouette loss, on our coloured images. Nviews indicates the number of views of each instance provided together in each minibatch during training.
The final rows show performance of two state-of-the-art methods with full 3D supervision (Fan et al., 2017; Richter and Roth, 2018)—note that
our colour results are comparable with these, in spite of using only 2D images. Experimental setting: subdivision, three views per object during
training, fixed lighting rotation.

Nviews lighting loss car chair aeroplane sofa

PTN (Yan et al., 2016) 24 white silhouette 0.71 0.50 0.56 0.62
DRC (Tulsiani et al., 2017b) 5 white silhouette 0.73 0.43 0.50 -
DRC (Tulsiani et al., 2017b) 5 white depth 0.74 0.44 0.49 -
NMR (Kato et al., 2018) 2 white silhouette 0.71 0.50 0.62 0.67
LPS (Yang et al., 2018) 2 white silhouette 0.78 0.44 0.57 0.54

PTN, our images 24 colour silhouette 0.66 0.22 0.42 0.46

ours 3 white silhouette 0.79 0.46 0.58 0.67
ours 3 white shading 0.81 0.48 0.60 0.67
ours 3 colour shading 0.83 0.50 0.61 0.73

PSG (Fan et al., 2017) - white 3D 0.83 0.54 0.60 0.71
MN (Richter and Roth, 2018) - white 3D 0.85 0.55 0.65 0.68

Table 7 Comparison of our method with the concurrent work MVC (Tulsiani et al., 2018) in different settings, on the three classes for which
they report results. Note that they vary elevation as well as azimuth, and their images are rendered with texturing under white light; hence, this
comparison to our method is only approximate. Experimental setting: subdivision, three views per object during training, fixed lighting rotation.

lighting loss car chair aeroplane

iou err acc iou |θ iou err acc iou |θ iou err acc iou |θ
ours white silhouette 0.62 19.4 0.55 0.79 0.45 13.1 0.60 0.46 0.56 1.4 0.83 0.58
ours white shading 0.77 3.0 0.91 0.81 0.46 4.2 0.83 0.48 0.57 1.0 0.89 0.60
ours colour shading 0.82 1.3 0.94 0.83 0.47 2.7 0.82 0.50 0.58 0.9 0.88 0.61
MVC white silhouette 0.74 5.2 0.87 0.75 0.40 7.8 0.81 0.42 0.52 14.3 0.69 0.55
MVC white depth 0.71 4.9 0.85 0.69 0.43 8.6 0.83 0.45 0.44 21.7 0.60 0.43

ploiting the shading information to aid reconstruction. When
the object pose is not given as supervision (column iou), the
model must learn to simultaneously disentangle shape, pose
and lighting. Interestingly, even in this extremely hard set-
ting our method still manages to produce good reconstruc-
tions, although of course the accuracy is usually lower than
with fixed lighting. Finally, note that our results with vary-
ing lighting are better than those with fixed lighting from the
final row of Table 3, using only the silhouette in the recon-
struction loss. This demonstrates that even when the model
does not have access to the lighting parameters, it still learns
to benefit from shading cues, rather than simply using the
silhouette.

5.4 Latent space structure

The shape of a specific object instance must be entirely cap-
tured by the latent embedding vector z. On the one hand,
using a higher dimensionality for z should result in better
reconstructions, due to the greater representational power.
On the other hand, a lower dimensionality makes it easier
for the model to learn to map any point in z to a reasonable

shape, and to avoid over-fitting the training set. To evalu-
ate this trade-off, we ran experiments with different dimen-
sionalities for z (Fig. 9). We see that for all classes, increas-
ing from 6 to 12 dimensions improves reconstruction perfor-
mance on the test set. Beyond 12 dimensions, the effect dif-
fers between classes. For car and chair, higher dimensionali-
ties yield lower performance (indicating over-fitting or other
training difficulties). Instead, aeroplane and sofa continue to
benefit from higher and higher dimensionalities, up to 48 for
aeroplane and 64 (and maybe beyond) for sofa.

For all our other experiments, we use a 12-dimensional
embedding, as this gives good performance on average across
classes. Note that our embedding dimensionality is much
smaller than its counterpart in other works. For example,
Tulsiani et al. (2017b) have a bottleneck layer with dimen-
sionality 100, while Wiles and Zisserman (2017) use dimen-
sionality 160. This low dimensionality of our embeddings
facilitates the encoder mapping images to a compact region
of the embedding space centred at the origin; this in turn al-
lows modelling the embeddings by a simple Gaussian from
which samples can be drawn.

Interpolating in the latent space. To demonstrate that
our models have learnt a well-behaved manifold of shapes
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Fig. 10 Interpolating between shapes in latent space. In each row,
the leftmost and rightmost images show ground-truth shapes from
ShapeNet, and the adjacent columns show the result of reconstructing
each using our model with subdivision parameterisation. In the centre
three columns, we interpolate between the resulting latent embeddings,
and display the decoded shapes. In each case, we see a semantically-
plausible, gradual deformation of one shape into the other.

for each class, we select pairs of ground-truth shapes, re-
construct these using our model, and linearly interpolate be-
tween their latent embeddings (Fig. 10). We see that the re-
sulting intermediate shapes give a gradual, smooth deforma-
tion of one shape into the other, showing that all regions of
latent space that we traverse correspond to realistic samples.

5.5 Multi-view training/testing

Table 5 shows results when we provide multiple views of
each object instance to the model, either at training time
only, or during both training and testing. In both cases, this
improves results over using just a single view—the model
has learnt to exploit the additional information about each
instance. Note that when training with three views but test-
ing with one, the network has not been optimised for the
single-view task; however, the additional information present
during training means it has learnt a stronger model of valid
shapes, and this knowledge transfers to the test-time sce-
nario of reconstruction from a single image.

5.6 Comparison to previous and concurrent works

Generation. Fig. 11 compares samples from our model,
to samples from that of Gadelha et al. (2017), on the four
object classes we have in common. This is the only prior
work that trains a 3D generative model using only single
views of instances, and without pose supervision. Note how-
ever that unlike us, all images in the training set of Gadelha
et al. (2017) are taken from one of a fixed set of eight poses,
making their task a little easier. We manually selected sam-
ples from our model that are stylistically similar to those

shown in Gadelha et al. (2017) to allow side-by-side com-
parison. We see that in all cases, generating meshes tends to
give cleaner, more visually-pleasing samples than their use
of voxels. For chair, our model is able to capture the very
narrow legs; for aeroplane, it captures the diagonal edges of
the wings; for car and vase, it captures the smoothly curved
edges. Note that as shown in Fig. 5, our model also success-
fully learns models for concave classes such as bathtub and
sofa—which is impossible for Gadelha et al. (2017) as they
do not consider shading.

Reconstruction. Table 6 compares our results with pre-
vious and concurrent 2D-supervised methods that input ob-
ject pose at training time. We consider works that appeared
in 2018 to be concurrent to ours (Henderson and Ferrari,
2018). Here, we conduct experiments in a setting match-
ing Yan et al. (2016), Tulsiani et al. (2017b), Kato et al.
(2018), and Yang et al. (2018): multiple views at training
time, with ground-truth pose supervision (given for 50% of
images in Yang et al. (2018)).

Even when using only silhouettes during training, our re-
sults are about as good as the best of the works we compare
to, that of Kato et al. (2018), which is a concurrent work. Our
results are somewhat worse than theirs for aeroplanes and
chairs, better for cars, and identical for sofas. On average
over the four classes, we reach the same iou of 62.5%. When
we add shading information to the loss, our results show
a significant improvement. Importantly, Yan et al. (2016),
Tulsiani et al. (2017b) and Yang et al. (2018) cannot exploit
shading, as they are based on voxels. Coloured lighting helps
all classes even further, leading to a final performance higher
than than all other methods on car and sofa, and comparable
to the best other method on chair and aeroplane (Kato et al.,
2018). On average we reach 66.8% iou, compared to 62.5%
for Kato et al. (2018).

We also show results for Yan et al. (2016) using our
coloured lighting images as input, but their silhouette loss.
This performs worse than our method on the same images,
again showing that incorporating shading in the loss is useful—
our colour images are not simply more informative to the en-
coder network than those of Yan et al. (2016). Interestingly,
when trained with shading or colour, our method outper-
forms Tulsiani et al. (2017b) even when the latter is trained
with depth information. When trained with colour, our re-
sults (average 66.8% iou) are even close to those of Fan
et al. (2017) (67.0%) and Richter and Roth (2018) (68.2%),
which are state-of-the-art methods trained with full 3D su-
pervision.

Table 7 compares our results with those of Tulsiani et al.
(2018). This is a concurrent work similar in spirit to our
own, that learns reconstruction and pose estimation with-
out 3D supervision nor pose annotations, but requires mul-
tiple views of each instance to be presented together during
training. We match their experimental setting by training our
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Fig. 11 Samples from the voxel-based method of Gadelha et al. (2017)
(odd rows), shown above stylistically-similar samples from our model
(even rows). Both methods are trained with a single view per instance,
and without pose annotations. However, our model outputs meshes,
and uses shading in the loss; hence, it can represent smooth surfaces
and learn concave classes such as vase.

models on three views per instance; however, they vary ele-
vation as well as azimuth during training, making their task
a little harder. We see that the ability of our model to exploit
shading cues enables it to significantly outperform Tulsiani
et al. (2018), which relies on silhouettes in its loss. This is
shown by iou and iou |θ being higher for our method with
white light and shading loss, than for theirs with white light
and silhouette. Indeed, our method outperforms theirs even
when they use depth information as supervision. When we
use colour lighting, our performance is even higher, due to
the stronger information about surface normals. Conversely,
when our method is restricted to silhouettes, it performs sig-
nificantly worse than theirs across all three object classes.

6 Conclusion

We have presented a framework for generation and recon-
struction of 3D meshes. Our approach is flexible and sup-
ports many different supervision settings, including weaker
supervision than any prior works (i.e. a single view per train-
ing instance, and without pose annotations). When pose su-
pervision is not provided, it automatically learns to disentan-
gle the effects of shape and pose on the final image. When
the lighting is unknown, it also learns to disentangle the ef-
fects of lighting and surface orientation on the shaded pix-
els. We have shown that exploiting shading cues leads to
higher performance than state-of-the-art methods based on
silhouettes (Kato et al., 2018). It also allows our model to
learn concave classes, unlike these prior works. Moreover,
our performance is higher than that of methods with depth
supervision (Tulsiani et al., 2017b, 2018), and even close
to the state-of-the-art results using full 3D supervision (Fan
et al., 2017; Richter and Roth, 2018). Finally, ours is the
first method that can learn a generative model of 3D meshes,
trained with only 2D images. We have shown that use of
meshes leads to more visually-pleasing results than prior
voxel-based works (Gadelha et al., 2017).

A Network architectures

In this appendix we briefly describe the architectures of the decoder
and encoder neural networks.

The decoder network Fφ takes the latent embedding z as input.
This is passed through a fully-connected layer with 32 output chan-
nels using ReLU activation. The resulting embedding is processed by
a second fully-connected layer that outputs the mesh parameters: ver-
tex offsets for subdivision parameterisation, and locations, scales and
rotations for the primitive-based parameterisations. For the primitive
scales, we use a softplus activation to ensure they are positive; for the
other parameters, we do not use any activation function.

The encoder network encω (x) is a CNN operating on RGB images
of size 128× 96 pixels; its architecture is similar to that of Wiles and
Zisserman (2017). Specifically, it has the following layers, each with
batch normalisation and ReLU activation:

– 3×3 convolution, 32 channels, stride = 2
– 3×3 convolution, 64 channels, stride = 1
– 2×2 max-pooling, stride = 2
– 3×3 convolution, 96 channels, stride = 1
– 2×2 max-pooling, stride = 2
– 3×3 convolution, 128 channels, stride = 1
– 2×2 max-pooling, stride = 2
– 4×4 convolution, 128 channels, stride = 1
– fully-connected, 128 channels

This yields a 128-dimensional feature vector for the image. The param-
eters for each variational distribution are produced by a further fully-
connected layer, each taking this feature vector as input. For the mean
of z, we do not use any activation function; for the mean of θfine we
use tanh activation, scaled by π/Rθ to ensure θcoarse rather than θfine is
used to model large rotations. For the mean of λfine we analogously use
tanh activation scaled by π/Rλ . For the standard deviations of z, θfine,
and λfine, we use softplus activation, to ensure they are positive. Finally,
for θcoarse and λcoarse, we use softmax outputs giving the probabilities
of the different coarse rotations.
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