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Abstract. The goal of this work is fully automatic 2D human pose estimation
in unconstrained TV shows and feature films. Direct pose estimation on this un-
controlled material is often too difficult, especially when knowing nothing about
the location, scale, pose, and appearance of the person, or even whether there is a
person in the frame or not.

We propose an approach that progressively reduces the search space for body
parts, to greatly facilitate the task for the pose estimator. Moreover, when video
is available, we propose methods for exploiting the temporal continuity of both
appearance and pose for improving the estimation based on individual frames.

The method is fully automatic and self-initializing, and explains the spatio-
temporal volume covered by a person moving in a shot by soft-labeling every
pixel as belonging to a particular body part or to the background. We demon-
strate upper-body pose estimation by running our system on four episodes of the
TV series Buffy the vampire slayer (i.e. three hours of video). Our approach is
evaluated quantitatively on several hundred video frames, based on ground-truth
annotation of 2D poses1. Finally, we present an application to full-body action
recognition on the Weizmann dataset.

1 Introduction

Our aim is to detect and estimate 2D human pose in video, i.e. recover a distribution
over the spatial configuration of body parts in every frame of a shot. Various pose rep-
resentations can then be derived, such as a soft-labelling of every pixel as belonging
to a particular body part or the background (figure 1b); or the ‘stickman’ of figure 1c,
indicating the location, orientation, and size of body parts. Note, our objective here is
not to estimate 3D human pose as in [6,28,31].

We wish to obtain pose estimates in highly challenging uncontrolled imaging con-
ditions, typical of movies and TV shows (figures 10, 11). Achieving this is one of the
main contributions of the paper. In this setting, images are often very cluttered, and a
person might cover only a small proportion of the image area, as they can appear at
any scale. Illumination varies over a diverse palette of lighting conditions, and is often
quite dark, resulting in poor image contrast. A person’s appearance is unconstrained, as

1 available at www.robots.ox.ac.uk/˜vgg/data/stickmen/index.html
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Fig. 1. Objective of this work. (a) Input image. (b) Soft-labelling of pixels to body parts or
background. Red indicates torso, green upper arms, blue lower arms and head. Brighter pixels
are more likely to belong to a part. Color planes are added up, so that purple indicates overlap
between lower-arm and torso, yellow between upper-arm and torso, and so on. (c) Stickman
representation of pose, obtained by fitting straight line segments to the segmentations in (b). For
enhanced visibility, the lower arms are in yellow and the head is in purple.

they can wear any kind of clothing, including body-tight or loose, short or long sleeves,
and any colors/textures. The background is unknown and changes over time, prevent-
ing the use of background subtraction techniques [5,9]. Finally, the camera is usually
moving, causing motion blur, and multiple people can be present at the same time and
can occlude each other during a shot.

Our method covers all poses within the upper-body frontal range. Special attention is
given to the arms, as they carry most of the information necessary to distinguish pose.
The proposed method supports arms folded over the torso, stretching outwards, pointing
forward, etc.

The need for such human centered tracking is evident, with applications ranging from
video understanding and search through to surveillance. Indeed 2D human segmenta-
tion is often the first step in determining 3D human pose from individual frames [1].
We illustrate the use of the extracted poses with an application to action recognition on
the Weizmann dataset.

An earlier version of this work first appeared at [10].

1.1 Approach Overview

We overview the method here for the upper-body case, where there are 6 parts: head,
torso, and upper/lower right/left arms (figure 1). Full details are given in section 2. The
method is also applicable to full bodies, as demonstrated in section 4.

A recent and successful approach to 2D human tracking in video has been to detect
in every frame, so that tracking reduces to associating the detections [24,30]. We adopt
this approach where detection in each frame proceeds in three stages, followed by a
final stage of transfer and integration of models across frames.

In our case, the task of pose detection is to estimate the parameters of a 2D articulated
body model. These parameters are the (x, y) location of each body part, its orientation
θ, and its scale. Assuming a single scale factor for the whole person, shared by all body
parts, the search space has 6 × 3 + 1 = 19 dimensions. Even after taking into account
kinematic constraints (e.g. the head must be connected to the torso), there are still a
huge number of possible configurations.
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Since at the beginning we know nothing about the person’s pose, clothing appear-
ance, location and scale in the image, directly searching the whole space is a time con-
suming and very fragile operation (there are too many image patches that could be
an arm or a torso!). Therefore, in our approach the first two stages use a weak model
of a person obtained through an upper-body detector generic over pose and appearance.
This weak model only determines the approximate location and scale of the person, and
roughly where the torso and head should lie. However, it knows nothing about the arms,
and therefore very little about pose. The purpose of the weak model is to progressively
reduce the search space for body parts.

The next stages then switch to a stronger model, i.e. a pictorial structure [9,23,24]
describing the spatial configuration of all body parts and their appearance. In the re-
duced search space, this stronger model has much better chances of inferring detailed
body part positions.

1. Human detection and tracking. We start by detecting human upper-bodies in every
frame, using a sliding window detection based on Histograms of Oriented Gradients [7],
and associate detections over time. Each resulting track connects the detections of a
different person. It carves out of the total spatio-temporal volume the smaller subvolume
covered by a person moving through the shot. This reduces the search space by setting
bounds on the possible (x, y) locations of the body parts and by fixing their scale, thus
removing a dimension of the search space entirely.

2. Foreground highlighting. At this stage the search for body parts is only limited by the
maximum extent possible for a human of that scale centered on the detected position.
We restrict the search area further by exploiting prior knowledge about the structure
of the detection window. Relative to it, some areas are very likely to contain part of
the person, whereas other areas are very unlikely. This allows the initialization of a
GrabCut segmentation [25], which removes part of the background clutter. This stage
further constrains the search space by limiting the (x, y) locations to lie within the
foreground area determined by GrabCut.

3. Single-frame parsing. We obtain a first pose estimate based on the image parsing
technique of Ramanan [23]. The area to be parsed is restricted to the region output of
foreground highlighting. Since the person’s scale has been fixed by stage 1), no explicit
search for body parts over scales is necessary.

In order to reduce the double-counting problems typical of pictorial structures [29],
we extend the purely kinematic model of [23] to include “repulsive” edges favoring
configurations of body parts where the left and right arms are not superimposed.

Both foreground highlighting and parsing stages are run separately for each detection
in a track.

4. Spatio-temporal parsing. The appearance of the body parts of a person changes little
within a shot. Moreover, the position of body parts changes smoothly over time. We
exploit both kinds of temporal continuity in a second pose estimation procedure which
(i) uses appearance models integrated from multiple frames where the system is con-
fident about the estimated pose; and (ii) infers over a joint spatio-temporal model of
pose, capturing both kinematic/repulsive constraints within a frame, and temporal con-
tinuity constraints between frames. As appearance is a powerful cue about the location
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of parts, the better appearance models improve results for frames where parsing failed
or is inaccurate. At the same time, the spatio-temporal model tightens the posterior dis-
tributions over part positions and disambiguates multiple modes hard to resolve based
on individual frames.

The spatio-temporal parsing stage runs over an entire track, as a track connects all
detections of a person. Multiple persons in the same shot result in separate tracks, for
each of which we run spatio-temporal parsing separately.

1.2 Related Works

Our work builds mainly on the Learning to Parse approach by Ramanan [23], which
provides the pictorial structure inference engine we use in stage 3, and on the Strike-
a-pose work [24]. The crucial difference to both works is the way the search space
of body part configurations is treated. Thanks to the proposed detection and foreground
highlighting stages, we avoid the very expensive and fragile search necessary in [23,24].
Moreover, compared to [24], our initial detection stage is generic over pose, so we
are not limited to cases where the video contains a pre-defined characteristic pose at
a specific scale. We also generalize and improve the idea of transferring appearance
models of [24]. Rather than using a single frame containing the characteristic pose, we
integrate models over multiple frames containing any pose.

Previous use of pictorial structure models have tolerated only limited amounts of
background clutter [9,23] and often assume knowledge of the person’s scale [23,24]
or background subtraction [9]. A few methods operate interactively from regions of
interest provided by the user [19].

There are also methods that detect humans using generative models for the entire
video sequences, e.g. [14,16]. However, to date these methods have been limited to
relatively simple backgrounds and to no occlusion of the person.

Our spatio-temporal model (section 2.4) is most closely related to that of [28,29],
but our framework is fully automatic (it does not need any manual initialization or
background subtraction).

The work of [20] recovers unusual, challenging body configurations in sports images
by combining segmentation and detectors trained to specific body parts, but requires a
person centered in the image and occupying most of it.

Finally, very recently two methods [3,12] have been presented for pose estimation of
people walking in busy city environments where the camera, multiple people, as well
as other objects move simultaneously. Both methods rely heavily on static and dynamic
priors specific to walking motion. In contrast, our method makes no assumptions about
expected poses, besides the person being upright, and is able to estimate a wide variety
of body configurations (figures 10, 11, 12).

2 The Approach in Detail

2.1 Upper-Body Detection and Temporal Association

Upper-body detection. In most shots of movies and TV shows, only the upper-body
is visible. To cope with this situation, we have trained an upper-body detector using the
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Fig. 2. Overview of the single-frame steps. 1. Upper body detection: The detected person
(inner rectangle) and enlarged window where further processing is applied (outer rectangle). 2.
Foreground highlighting: (b) subregions for initializing GrabCut. (c) foreground region output
by GrabCut. 3. Parsing: (d) area to be parsed F (dilated from (c)) and (e) edges within F . (f)
posterior of the part positions p(li|I) after the edge-based inference. (g) posterior after the second
inference, based on edges and appearance. This visualization is obtained by convolving rectangles
representing body parts with their corresponding posterior.

approach of Dalal and Triggs [7], which achieves excellent performance on the related
task of full-body pedestrian detection. Image windows are spatially subdivided into tiles
and each is described by a Histogram of Oriented Gradients. A sliding-window mecha-
nism then localizes the objects. At each location and scale the window is classified by a
linear SVM as containing the object or not. Photometric normalization within multiple
overlapping blocks of tiles makes the method particularly robust to lighting variations.

The training data consists of 96 video frames from three movies (Run Lola run,
Pretty woman, Groundhog day), manually annotated with a bounding-box enclosing an
upper-body. The images have been selected to maximize diversity, and include many
different actors, with only a few images of each, wearing different clothes and/or in
different poses. No images from the test material (shots from Buffy the Vampire Slayer)
were used for training.

Following Laptev [17], the training set is augmented by perturbing the original exam-
ples with small rotations and shears, and by mirroring them horizontally. This improves
the generalization ability of the classifier. By presenting it during training with mis-
alignments and variations, it has a better chance of noticing true characteristics of the
pattern, as opposed to details specific to individual images. The augmented training set
is 12 times larger and contains more than 1000 examples.

We choose an operating point of 90% detection-rate at 0.5 false-positives per image.
This per-frame detection-rate translates into an almost perfect per-track detection-rate
after temporal association (see below). Although individual detections might be missed,
entire tracks are much more robust. Moreover, we remove most false-positives by weed-
ing out tracks shorter than 20 frames.

In practice, this detector works well for viewpoints up to 30 degrees away from
straight frontal, and also detects back views (figures 10, 11).
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Temporal association. After applying the upper-body detector to every frame in the
shot independently, we associate the resulting bounding-boxes over time by maximizing
their temporal continuity. This produces tracks, each connecting detections of the same
person.

Temporal association is cast as a grouping problem [30], where the elements to be
grouped are bounding-boxes. As similarity measure we use the area of the intersec-
tion divided by the area of the union (IoU), which subsumes both location and scale
information, damped over time. We group detections based on these similarities using
the Clique Partitioning algorithm of [11], under the constraint that no two detections
from the same frame can be grouped. Essentially, this forms groups maximizing the
IoU between nearby time frames.

This algorithm is very rapid, taking less than a second per shot, and is robust to
missed detections, because a high IoU attracts bounding-boxes even across a gap of
several frames. Moreover, the procedure allows persons to overlap partially or to pass in
front of each other, because IoU injects a preference for continuity scale in the grouping
process, in addition to location, which acts as a disambiguation factor.

In general, the ‘detect & associate’ paradigm is substantially more robust than regular
tracking, as recently demonstrated by several authors [22,30].

2.2 Foreground Highlighting

The location and scale information delivered by an upper-body detection greatly con-
strains the space of possible body parts. They are now confined to the image area sur-
rounding the detection, and their approximate size is known, as proportional to the
detection’s scale. However, to accommodate for all possible arm poses we must still ex-
plore a sizeable area (figure 2a). Stretching out the arms in any direction forms a large
circle centered between the shoulders. In challenging images from TV shows, this area
can be highly cluttered, confusing the body part estimator.

Fortunately, we have prior knowledge about the structure of the search area. The
head lies somewhere in the middle upper-half of the detection window, and the torso
is directly underneath it (figure 2b). This is known because the detector has been ex-
plicitly trained to respond to such structures. In contrast the arms could be anywhere.
We propose to exploit this knowledge to initialize GrabCut [25], by learning initial
foreground/background color models from regions where the person is likely to be
present/absent. The resulting segmentation removes much of the background clutter,
substantially simplifying the later search for body parts (figure 2c).

Let R be a region of interest obtained by enlarging the detection window as in
figure 2a. R is divided into four subregions F, Fc, B, U (see figure 2b). GrabCut is
initialized as follows: the foreground model is learnt from F and Fc (Fc is known to
belong to the person, while F contains mostly foreground, but some background as
well); and the background model from B (it covers mostly background, but it might
also include part of the arms, depending on the pose). Furthermore, the region Fc is
clamped as foreground, but grabcut is free to set pixel labels in all other subregions (we
have extended the original GrabCut algorithm to enable these operations). The U region
is neutral and no color model is learnt from it. The setup accurately expresses our prior
knowledge and results in a controlled, upper-body-specific segmentation, assisted by as
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Fig. 3. Examples of foreground highlighting

much information as we can derive from the previous object detection process. Near
the head, B and Fc compete for the U region, with the foreground growing outwards
until it meets a background-colored area, resulting in a good head segmentation. Along
the sides, the background floods into the initial F to segment the shoulders, while at the
same time the arms get labeled as foreground because they are colored more similarly
to the initial F than to the initial B (figure 3).

The above procedure is rather conservative, and it often retains parts of the back-
ground. The goal is not to achieve a perfect segmentation, but to reduce the amount
of background clutter (figure 3). It is more important not to lose body parts, as they
cannot be recovered later. To validate this, we have inspected 1584 frames of a Buffy
episode (i.e. every 10th frame) and only in 71 a body part was lost (4.5%). In contrast
to traditional background subtraction, used in many previous works to extract silhou-
ettes [5,9,13], our method does not need to know the background a priori, and allows
the background to change over time (in video).

2.3 Single-Frame Parsing

Our main goal is to explain the spatio-temporal volume covered by a person moving
in a shot. In particular, we want to estimate the 2D pose of the person, as the location,
orientation and size of each body part. Ideally, the exact image regions covered by
the parts should also be found. For estimating 2D pose in individual video frames, we
build on the image parsing technique of Ramanan [23]. In the following we first briefly
summarize it, and then describe our extensions.

Image parsing [23]. A person is represented as a pictorial structure composed of body
parts tied together in a tree-structured conditional random field (figure 5a). Parts, li,
are oriented patches of fixed size, and their position is parametrized by location and
orientation. The posterior of a configuration of parts L = {li} given an image I can be
written as a log-linear model

P (L|I) ∝ exp

⎛
⎝ ∑

(i,j)∈E

Ψ(li, lj) +
∑

i

Φ(li)

⎞
⎠ (1)

The pairwise potential Ψ(li, lj) corresponds to a spatial prior on the relative position
of parts and embeds the kinematic constraints (e.g. the upper arms must be attached to
the torso). The unary potential Φ(li) corresponds to the local image evidence for a part
in a particular position (likelihood). Since the model structure E is a tree, inference is
performed exactly and efficiently by sum-product Belief Propagation [4].
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Fig. 4. The image parsing pose estimation algorithm of [23] applied to the image in figure 1. (a)
All edges inside region R, without filtering them through foreground highlighting. (b) Parsing
applied to the whole region R. It achieves a worse estimate than when helped by foreground
highlighting, figure 2g, because it is attracted by the bars in the background. (c) Parsing applied
directly to the whole image, without reducing the search space to R based on the initial person
detection. It fails entirely.

The key idea of [23] lies in the special treatment of Φ. Since the appearance of neither
the parts nor the background is known at the start, only edge features are used. A first
inference based on edges delivers soft estimates of body part positions, which are used
to build appearance models of the parts (e.g. in figure 2f the torso is in red). Inference in
then repeated using an updated Φ incorporating both edges and appearance. The process
can be iterated further, but in this paper we stop at this point. The technique is applicable
to quite complex images because (i) the appearance of body parts is a powerful cue, and
(ii) appearance models can be learnt from the image itself through the above two-step
process.

The appearance models used in [23] are color histograms over the RGB cube dis-
cretized into 16 × 16 × 16 bins. We refer to each bin as a color c. Each part li has
foreground and background likelihoods p(c|fg) and p(c|bg). These are learnt from a
part-specific soft-assignment of pixels to foreground/background derived from the pos-
terior of the part position p(li|I) returned by parsing. The posterior for a pixel to be
foreground given its color p(fg|c) is computed using Bayes’ rule and used during the
next parse.

As in [23], in our implementation we explicitly maintain a 3D binned volume to
represent the possible (x, y, θ) positions of each part (discretization: every pixel for
(x, y) and 24 steps for θ). This dense representation avoids the sampling needed by
particle representations (e.g. [28,29]). The kinematic potential Ψ has a relative location
(x, y) and a relative orientation (θ) components. The former gives zero probability if
(lj − li) is out of a box-shaped tolerance region around the expected relative location
(i.e. the parts must be connected [23]). The relative orientation component is a discrete
distribution over θi − θj . The parameters of Ψ are learned from training data in [23].
The relative orientation prior is nearly uniform, allowing our approach to estimate a
variety of poses.

When [23] is run unaided on a highly cluttered image such as figure 1a, without any
idea of where the person might be or how large it is, parsing fails entirely (figure 4c).
There are simply too many local image structures which could be a limb, a head, or a
torso. This is assessed quantitatively in section 3.
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Fig. 5. Single-frame models. Each node represents a body part (h: head, t: torso, left/right up-
per/lower arms lua, rua, lla, rla). (a) The kinematic tree includes edges between every two body
parts which are physically connected in the human body. (b) The repulsive model extends the
kinematic tree with edges between opposite-sided arm parts.

We reduce the space explored by parsing based on three sources of information:

– (i) the location and scale information supplied by the upper-body detector, is used
to define the enlarged search region R. Parsing is run only within R, rescaled to
a fixed size, tuned to roughly yield the part sizes expected by the parser. Thanks
to the proper use of scale information from detection, we effectively obtain scale-
invariant pose estimation, without having to explicitly search for body parts at mul-
tiple scales. This significantly reduces ambiguity and false positive detections.

– (ii) Foreground highlighting. We further simplify pose estimation by restricting the
area to be parsed to the regionF ⊂ R output of foreground highlighting (figure 2d).
This is realized by removing all edges outside F and setting all pixels R \ F to
black. This causes the image evidence Φ(li) to go to −∞ for li /∈ F , and hence it
is equivalent to constraining the space of possible poses.

– (iii) Head and torso constraints. A final assistance is given by mildly constraining
the (x, y) location of the head and torso based on our prior knowledge about the
spatial structure of R (see section 2.2). The constraints come in the form of broad
subregions H, T ∈ R where the head and torso must lie, and are realized by setting
Φ(lhead), Φ(ltorso) to −∞ for li /∈ H, T (figure 2d). These constraints directly
reflect our prior knowledge from the detection process and therefore do not limit
the range of poses covered by the parser (e.g. for the arms).

All the above aids to pose estimation are made possible from the initial generic
upper-body detection. Foreground highlighting and location constraints can only be
automated when building on a detection window. The combined effect of these im-
provements is a vastly more powerful parser, capable of estimating 2D pose in a highly
cluttered image, even when the person occupies only a small portion of it. Moreover,
parsing is now faster, as it searches only an image region, supports persons at multiple
scales, and multiple persons at the same time, as each detection is parsed separately.

Repulsive model. A well-known problem with pictorial structure models evaluated
as trees such as the one above, is that different body parts can take on similar (x, y, θ)
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states, and therefore cover the same image pixels. Typically this happens for the left and
right lower (or upper) arms, when the image likelihood for one is substantially better
than the likelihood for the other. It is a consequence of the assumed independence of the
left and right arms in the tree. This is referred to as the double-counting problem and
was also noticed by other authors [29]. One solution, adopted in previous work, is to
explicitly model limb occlusion by introducing layers into the model [2,15,29], though
the graphical model is then no longer a tree.

Here, in order to alleviate the double-counting problem we add to the kinematic tree
model two repulsive edges (figure 5b). The first edge connects the left upper arm (lua)
to the right upper arm (rua), while the second edge connects the left lower arm (lla) to
the right lower arm (rla). The posterior of a configuration of parts in the extended model
becomes

P (L|I) ∝ exp

⎛
⎝ ∑

(i,j)∈E

Ψ(li, lj) +
∑

i

Φ(li) + Λ(llua, lrua) + Λ(llla, lrla)

⎞
⎠ (2)

The repulsive prior Λ(li, lj) gives a penalty when parts li and lj overlap, and no penalty
when they don’t

Λ(li, lj) =

{
wΛ if |li − lj | ≤ tΛ

0 otherwise
(3)

Therefore, the extended model prefers configurations of body parts where the left and
right arms are not superimposed. It is important to notice that this new model does not
forbid configurations with overlapping left/right arms, but is biased against them. If the
image evidence in their favor is strong enough, inference will return configurations with
overlapping arms (figure 10-c2). This properly reflects our prior knowledge that, in the
majority of images, the arms don’t occlude each other.

Since the extended graphical model has loops, we perform approximate inference
with sum-product Loopy Belief Propagation, which in practice delivers a good estimate
of the posterior marginals and is computationally efficient. The weight wΛ and the
threshold tΛ are manually set and kept fixed for all experiments of this paper.

Figure 6 shows a typical case where the purely kinematic model delivers a posterior
whose mode puts both lower arms on the left side, while the extended model yields the
correct pose, thanks to the repulsive edges.

2.4 Spatio-Temporal Parsing

Parsing treats each frame independently, ignoring the temporal dimension of video.
However, all detections in a track cover the same person, and people wear the same
clothes throughout a shot. As a consequence, the appearance of body parts is quite stable
over a track. In addition to this continuity of appearance, video offers also continuity of
geometry: the position of body parts changes smoothly between subsequent frames.

In this section, we exploit the continuity of appearance for improving pose estima-
tions in particularly difficult frames, and the continuity of geometry for disambiguating
multiple modes in the positions of body parts, which are hard to resolve based on indi-
vidual frames.
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a b c

Fig. 6. Impact of repulsive model. (a) Original image. (b) Pose estimated by the kinematic tree
model. As in previous figures, the visualization is obtained by convolving rectangles representing
body parts with their corresponding posterior probability over (x, y, θ). The right (in the image)
upper arm (green) has two equally probable modes, one at the correct position, and one on the
left upper arm. For the right lower arm (blue) instead, nearly all of the probability mass is on
the left side, while only very little is on the correct position. This double-counting phenomenon
visibly affects the estimation. (c) Pose estimated after extending the model with repulsive edges.
The position of the right lower arm is now correctly estimated.

a b c

Fig. 7. Impact of transferring appearance models. (a) one of several frames with low TPE
after single-frame parsing, from which integrated appearance models are learnt (top). The pose
estimate is quite clear (bottom). (b) a frame with high TPE. The system is uncertain whether
the right arm lies on the window or at its actual position (bottom). (c) Parsing the frame in (b)
while using the learned integrated appearance models. The right arm ambiguity is now resolved
(bottom), as the system acquires from other frames the knowledge that white is a color occurring
on the background only.

Learning integrated appearance models. The idea is to find the subset of frames
where the system is confident of having found the correct pose, integrate their appear-
ance models, and use them to parse the whole track again (figure 7). This improves pose
estimation in frames where parsing has either failed or is inaccurate, because appear-
ance is a strong cue about the location of parts.
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Fig. 8. Spatio-temporal model. For clarity, only head (lh), torso (lt), and left/right upper arms
(llua, lrua) are drawn.

Frames where parsing infers a highly confident configuration of body parts provide
good reference appearance models (figure 7a). The measure of confidence used here
is the entropy of the posterior of the part positions p(li|I), accumulated over all parts
L = {li} to give the total pose entropy TPE:

TPE(L|I) = −
∑

i

⎛
⎝ ∑

x,y,θ

p(li = {x, y, θ}|I) · log p(li = {x, y, θ}|I)

⎞
⎠ (4)

Rather than simply selecting the single frame with the lowest TPE, we learn models
by integrating over all frames with a similar low TPE. It can be shown [26] that the
distribution minimizing the total KL-divergence to a set of distributions is their average.
Hence, we integrate the foreground and background likelihoods {pr(c|fg)}, {pr(c|bg)}
from the reference frames r by averaging them. The integrated posteriors pi(fg|c) are
then obtained by applying Bayes’ rule.

The integrated models are richer, in that pi(fg|c) is nonzero for a broader range
of colors, so they generalize to a larger number of frames. Moreover, they are more
accurate, because estimated over a wider support. Examples of the benefits brought by
using the learned integrated appearance models to re-parse frames are shown in figure 7
and by the difference between figure 2g (purely single-frame) and figure 1b (re-parsing).

Spatio-temporal inference. We extend the single-frame person model to include de-
pendencies between body parts over time (figure 8). The extended model has a node
for every body part in every frame of a continuous temporal window (11 frames in our
experiments). The posterior of all configurations of parts {Lt} = {lti} given all frames
{It} can be written as

P ({Lt}|{It}) ∝

exp

⎛
⎝∑

t,i

⎛
⎝ ∑

j|(i,j)∈E

Ψ(lti , l
t
j) + Φ(lti) + Ω(lti, l

t+1
i ) + Λ(ltlua, ltrua) + Λ(ltlla, ltrla)

⎞
⎠

⎞
⎠ (5)

In addition to the kinematic/repulsive dependencies Ψ, Λ between different parts in a
single frame, there are temporal dependencies Ω between nodes representing the same
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part in subsequent frames. As a temporal prior Ω(lti , l
t+1
i ) we use a simple box-shaped

distribution limiting the difference in the lti = (x, y, θ) position of a body part between
frames. We use the integrated appearance models to obtain a better image likelihood
Φ. Approximate inference in the spatio-temporal model with loops is carried out with
sum-product Loopy Belief Propagation.

The spatio-temporal inference is a batch process treating all frames in the tempo-
ral window simultaneously, as opposed to traditional tracking, where only past frames
can influence estimation in the current frame. The inference procedure outputs the full
marginal posteriors p(lti |{It}), defining the probability of every possible (x, y, θ) body
part position in every frame. This is better than a single MAP solution [24], as any re-
maining ambiguity and uncertainty is visible in the full posteriors (e.g. due to blurry
images, or tubular background structures colored like the person’s arms). Finally, our
joint spatio-temporal inference is better than simply smoothing the single-frame posteri-
ors over time, as the kinematic dependencies within a frame and temporal dependencies
between frames simultaneously help each other.

Thanks to the proposed joint spatio-temporal inference, the final pose estimates are
tighter and more accurate than single-frame ones. As a typical effect, multiple modes in
the positions of body parts are disambiguated, because modes not consistently recurring
over time are attenuated by the temporal prior Ω (figure 9). Moreover, the estimated
poses are now more temporally continuous, which is useful for estimating the motion
of body parts for action recognition.

3 Upper-Body Pose Estimation Results

We have applied our pose estimation technique to episodes 2,4,5 and 6 of season five of
Buffy the vampire slayer, for a total of more than 70000 video frames over about 1000
shots.

The examples in figures 10 and 11 show that the proposed method meets the chal-
lenges set in the introduction. It successfully recovers the configuration of body parts in
spite of extensive clutter, persons of different size, dark lighting and low contrast (c3, f2,
f3). Moreover, the persons wear all kinds of clothing, e.g. ranging from long sleeves to
sleeveless (b3, a3, h3), and this is achieved despite the fact that their appearance is un-
known a priori and was reconstructed by the algorithm. The system correctly estimated
a wide variety of poses, including arms folded over the body (c1, c2, g1), stretched out
(e3, f3), and at rest (e1, f1). The viewpoint doesn’t have to be exactly frontal, as the
system tolerates up to about 30 degrees of out-of-plane rotation (c1). Persons seen from
the back are also covered, as the upper-body detector finds them and we don’t rely on
skin-color segmentation (e1, f1). Finally, the method deals with multiple persons in the
same image and delivers a separate pose estimate for each (h2, note how the pose of
each person is estimated independently).

We quantitatively assess these results on 69 shots divided equally among three of
the episodes. We have annotated the ground-truth pose for four frames spread roughly
evenly throughout each shot, by marking each body part by one line segment [20]
(figure 10a). Frames were picked where the person is visible at least to the waist and
the arms fit inside the image. This was the sole selection criterion. In terms of imaging
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a b c

Fig. 9. Impact of spatio-temporal parsing. (a) Three subsequent video frames. (b) Pose es-
timated by single-frame parsing after transferring appearance models, but without dependencies
between body parts over time. In the first and third frames, the right upper arm has a strong second
mode on the face, but not in the second frame. (c) Pose estimated by the complete spatio-temporal
model. The spurious mode has been largely eliminated.

conditions, shots of all degrees of difficulty have been included. A body part returned
by the algorithm is considered correct if its segment endpoints lie within 50% of the
length of the ground-truth segment from their annotated location.

The initial detector found an upper-body in 88% of the 69 × 4 = 276 annotated
frames, and this places an upper bound on performance. Table 1 shows the percentage
of the 243 × 6 = 1458 body parts in these frames which have been correctly esti-
mated by several versions of our system. Our best result is 62.6%. The image parser
of [23] using software supplied by the author, and run unaided directly on the image,
achieves only 9.6%, thus highlighting the great challenge posed by this data, and the
substantial improvements brought by our techniques. Helping [23] by constraining it by
the location and scale delivered by the initial human detection causes performance to
jump to 41.2% (section 2.1). Adding foreground highlighting further raises it to 57.9%
(section 2.2). These results confirm that both search space reduction stages we pro-
posed (starting from a detection and foreground highlighting) contribute considerably
to the quality of the results. Transferring appearance models increases performance
moderately to 59.4% (section 2.4). The improvement appears relatively small because
in many cases the localization refinements are too fine to be captured by our coarse
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a

b

c

d

1 2 3

Fig. 10. Pose estimation results I. (a1) example ground-truth ‘stickman’ annotation. All other
subfigures are the output of the proposed method, with body part segmentations overlaid. For
illustration, in (a2) we also overlay the stickman derived by our method. The color coding is as
follows: head = purple, torso = red, upper arms = green, lower arms = yellow. In (c2) a pose
with crossed arms is correctly estimated: the repulsive model does not prevent our system from
dealing with these cases.

evaluation measure. On the other hand, this suggests that the proposed approach per-
forms well also on static images. Extending the purely kinematic model of [23] with
repulsive priors brings a last visible improvement to 62.6%, thanks to alleviating the
double-counting problem (section 2.3).

Somewhat surprisingly, including temporal priors does not improve our evaluation
score (section 2.4). This is due to two reasons. The first is that many cases where the
estimated poses become more temporally continuous do not result in a better score.
Our measure does not prize temporal smoothness, it only looks at the position of body
parts in individual frames. The second reason is that temporal integration occasion-
ally worsens the estimated poses. Due to the temporal prior, the posterior probability
of a (x, y, θ) state in a frame depends also on nearby states in neighboring frames.
Therefore, if a body part is ‘missing’ at its correct position in a frame, i.e. the unary
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e

f

1 2 3

g

h

Fig. 11. Pose estimation results II. More example pose estimations. A fair sample of failures
are also included, e.g. (f1) is missed as a detection, and the wrong pose is obtained in (e3) (rear
person). Notice how the leftmost person in (h2) is largely occluded.

potential gives it near-zero probability, the posterior probability of the correct position
in neighboring frames is decreased by the temporal prior (i.e. it propagates the miss
over time; the same behavior also eliminates incorrect modes). A potential solution
is to model occluded/missing body parts by extending the state space with a replica
for each state, labeled as occluded/missing. This replica would have a low, but non-
zero probability. In this fashion, the joint probability of a configuration of body parts
including such a state would also be non-zero. This is a topic of our current research.

4 Application: Action Recognition on the Weizmann Dataset

Determining human pose is often a first step to action recognition. For example [18]
classifies frames by their pose as a pre-filter to spatio-temporal action detection, and
[27] specifies actions by pose queries.

In this section we apply the extracted pose representation to the task of action recog-
nition on the Weizmann dataset [5], which includes nine actions performed by nine
different subjects who are fully visible in all frames (including their legs). Following
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Table 1. Percentage of correctly estimated body parts by various versions of our method

Method Performance
Ramanan NIPS 2006 [23] 9.6%
+ detection 41.2%
+ foreground highlighting 57.9%
+ appearance transfer 59.4%
+ repulsive model 62.6%
+ complete spatio-temporal model 61.7%

Fig. 12. Pose estimation on the Weizmann dataset [5]. Our methods performs well also on full
bodies, and handles a variety of poses (left: a jumping-jack; right: walking).

Fig. 13. Action descriptor. Accumulated motion differences for two subjects walking (left) and
waving with one hand (right). For illustration, the difference images in this figure are computed
from all body parts. Our descriptor instead, is a concatenation of difference images for each body
part groups, which provides more discriminative power.

the standard leave-one-out evaluation protocol [5,13,21], we train on eight subjects and
test on the remaining one. The experiment is then repeated by changing the test subject
and recognition rates are averaged.

Here, we replace the upper-body detector by the standard HOG based pedestrian de-
tector of Dalal and Triggs [7], and employ a full-body pictorial structure including also
upper and lower legs (figure 12). Our action descriptor is inspired by motion history im-
ages [8] and is obtained as follows. First, for each frame we derive a soft-segmentation
from the posteriors of the part positions p(li|I) delivered by our pose estimator. Next,
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we subtract these soft-segmentations between pairs of subsequent frames, and accu-
mulate the differences over the whole sequence. The resulting accumulated difference
image is then subsampled to a 16x32 grid (figure 13). The final descriptor is obtained
by computing a separate difference image for each of the four body part groups (torso,
arms, legs, and head) and concatenating them. The descriptor is informative because it
encodes how much motion each body part group performs, and at which position rel-
ative to the coordinate frame of the detection window. It is robust because differences
are accumulated over many frames, limiting the impact of incorrect pose estimates in
a few frames. For each action, we train a one-vs-all linear SVM on this descriptor, and
use them to classify the sequences of the test subjects.

Although previous works using background subtraction achieve perfect results on
this dataset [5,13], the only work we are aware of tackling the task without any static
background assumption2 only obtains 73% recognition rate [21]. While operating in
the same conditions, our method achieves the significantly higher rate of 88%. These
results demonstrate the suitability of our technique to full body pose estimation.

5 Appraisal and Future Work

We have demonstrated automated upper body pose estimation on extremely challenging
video material – the principal objective of this work.

The numerous works defining action descriptors based on body outlines [5,13] could
benefit from our technique, as it provides outlines without resorting to traditional back-
ground segmentation, requiring a known and static background.

Of course, further improvements are possible. For example the body part segmenta-
tions could be improved by a further application of GrabCut initialized from the current
segmentations. Another possible extention is to explicitly model dependencies between
multiple people, e.g. to prevent the same body part from being assigned to different
people.

The upper body detector and tracking software is available at www.robots.ox.
ac.uk/˜vgg/research/pose_estimation/index.html
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