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Abstract. Methods based on local, viewpoint invariant features have
proven capable of recognizing objects in spite of viewpoint changes, oc-
clusion and clutter. However, these approaches fail when these factors are
too strong, due to the limited repeatability and discriminative power of
the features. As additional shortcomings, the objects need to be rigid and
only their approximate location is found. We present an object recogni-
tion approach which overcomes these limitations. An initial set of feature
correspondences is first generated. The method anchors on it and then
gradually explores the surrounding area, trying to construct more and
more matching features, increasingly farther from the initial ones. The
resulting process covers the object with matches, and simultaneously sep-
arates the correct matches from the wrong ones. Hence, recognition and
segmentation are achieved at the same time. Only very few correct initial
matches suffice for reliable recognition. Experimental results on still im-
ages and television news broadcasts demonstrate the stronger power of
the presented method in dealing with extensive clutter, dominant occlu-
sion, large scale and viewpoint changes. Moreover non-rigid deformations
are explicitly taken into account, and the approximative contours of the
object are produced. The approach can extend any viewpoint invariant
feature extractor.

1 Introduction

The modern trend in object recognition has abandoned model-based approaches
(e.g. [2]), which require a 3D model of the object as input, in favor of appearance-
based ones, where some example images suffice. Two kinds of appearance-based
methods exist: global and local. Global methods build an object representation by
integrating information over an entire image (e.g [4,17,27]), and are therefore very
sensitive to background clutter and partial occlusion. Hence, global methods only
consider test images without background, or necessitate a prior segmentation, a
task which has proven extremely difficult. Additionally, robustness to large view-
point changes is hard to achieve, because the global object appearance varies in a
complex and unpredictable way (the object’s geometry is unknown). Local meth-
ods counter problems due to clutter and occlusion by representing images as a
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collection of features extracted based on local information only (e.g. [25]). After
the influential work of Schmid [24], who proposed the use of rotation-invariant
features, there has been important evolution. Feature extractors have appeared
[12,14] which are invariant also under scale changes, and more recently recog-
nition under general viewpoint changes has become possible, thanks to extrac-
tors adapting the complete affine shape of the feature to the viewing conditions
[1,13,15,23,31,30]. These affine invariant features are particularly significant: even
though the global appearance variation of 3D objects is very complex under view-
point changes, it can be approximated by simple affine transformations on a lo-
cal scale, where each feature is approximately planar (a region). Local invariant
features are used in many recent works, and provide the currently most success-
ful paradigm for object recognition (e.g. [12,15,18,21,30]). In the basic common
scheme a number of features are extracted independently from both a model and
a test image, then characterized by invariant descriptors and finally matched.

In spite of their success, the robustness and generality of these approaches
are limited by the repeatability of the feature extraction, and the difficulty of
matching correctly, in the presence of large amounts of clutter and challeng-
ing viewing conditions. Indeed, large scale or viewpoint changes considerably
lower the probability that any given model feature is re-extracted in the test
image. Simultaneously, occlusion reduces the number of visible model features.
The combined effect is that only a small fraction of model features has a cor-
respondence in the test image. This fraction represents the maximal number of
features that can be correctly matched. Unfortunately, at the same time exten-
sive clutter gives rise to a large number of non-object features, which disturb the
matching process. As a final outcome of these combined difficulties, only a few,
if any, correct matches are produced. Because these often come together with
many mismatches, recognition tends to fail.

Even in easier cases, to suit the needs for repeatability in spite of viewpoint
changes, only a sparse set of distinguished features [18] are extracted. As a result,
only a small portion of the object is typically covered with matches. Densely
covering the visible part of the object is desirable, as it increases the evidence
for its presence, which results in higher detection power. Moreover, it would
allow to find the contours of the object, rather than just its location.

The image exploration approach. In this chapter we tackle these problems with
a new, powerful technique to match a model view to the test image which no
longer relies solely on matching viewpoint invariant features. We start by pro-
ducing an initial large set of unreliable region correspondences, so as to maximize
the number of correct matches, at the cost of introducing many mismatches. Ad-
ditionally, we generate a grid of regions densely covering the model image. The
core of the method then iteratively alternates between expansion phases and con-
traction phases. Each expansion phase tries to construct regions corresponding
to the coverage ones, based on the geometric transformation of nearby existing
matches. Contraction phases try to remove incorrect matches, using filters that
tolerate non-rigid deformations.
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This scheme anchors on the initial matches and then looks around them try-
ing to construct more. As new matches arise, they are exploited to construct
even more, in a process which gradually explores the test image, recursively con-
structing more and more matches, increasingly farther from the initial ones. At
each iteration, the presence of the new matches helps the filter taking better
removal decisions. In turn, the cleaner set of matches makes the next expansion
more effective. As a result, the number, percentage and extent of correct matches
grow with every iteration. The two closely cooperating processes of expansion
and contraction gather more evidence about the presence of the object and sep-
arate correct matches from wrong ones at the same time. Hence, they achieve
simultaneous recognition and segmentation of the object.

By constructing matches for the coverage regions, the system succeeds in
covering also image areas which are not interesting for the feature extractor
or not discriminative enough to be correctly matched by traditional techniques.
During the expansion phases, the shape of each new region is adapted to the local
surface orientation, allowing the exploration process to follow curved surfaces
and deformations (e.g. a folded magazine).

The basic advantage of our approach is that each single correct initial match
can expand to cover a smooth surface with many correct matches, even when
starting from a large number of mismatches. This leads to filling the visible
portion of the object with matches. Some interesting direct advantages derive
from it. First, robustness to scale, viewpoint, occlusion and clutter are greatly
enhanced, because most cases where traditional approaches generate only a few
correct matches are now solvable. Secondly, discriminative power is increased,
because decisions about the object’s identity are based on information densely
distributed over the entire portion of the object visible in the test image. Thirdly,
the approximate boundary of the object in the test image is suggested by the
final set of matches. Fourthly, non-rigid deformations are explicitly taken into
account.

Chapter organization. Sections 2 to 8 explain the image exploration technique. A
discussion of related work can be found in section 10, while experimental results
are given in section 9. Finally, section 11 closes the chapter with conclusions
and possible directions for future research. A preliminary version of this work
appeared in [8,9].

2 Overview of the Method

Figure 2-left shows a challenging example, which is used as case-study through-
out the chapter. There is a large scale change (factor 3.3), out-of-plane rotation,
extensive clutter and partial occlusion. All these factors make the life of the
feature extraction and matching algorithms hard.

A scheme of the approach is illustrated in figure 1. We build upon a multi-
scale extension of the extractor of [30]. However, the method works in conjunc-
tion with any affine invariant region extractor [1,13,15]. In the first phase (soft
matching), we form a large set of initial region correspondences. The goal is to
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obtain some correct matches also in difficult cases, even at the price of includ-
ing a large majority of mismatches. Next, a grid of circular regions covering the
model image is generated (coined coverage regions). The early expansion phase
tries to propagate these coverage regions based on the geometric transformation
of nearby initial matches. By propagating a region, we mean constructing the cor-
responding one in the test image. The propagated matches and the initial ones
are then passed through a local filter, during the early contraction phase, which
removes some of the mismatches. The processing continues by alternating faster
expansion phases (main expansion), where coverage regions are propagated over
a larger area, with contraction phases based on a global filter (main contraction).
This filter exploits both topological arrangements and appearance information,
and tolerates non-rigid deformations. The ‘early’ phases differ from the ‘main’
phases in that they are specialized to deal with the extremely low percentage of
correct matches given by the initial matcher in particularly difficult cases.

i )
model image
— Soft. | | Ealy | _| Eary Main Main L,
“test image. | image matching expansion contraction expansion contraction

Fig. 1. Phases of the image exploration technique

3 Soft Matching

The first stage is to compute an initial set of region matches between a model
image I, and a test image I;. The region extraction algorithm [30] is applied to
both images independently, producing two sets of regions &,,,®;, and a vector
of invariants describing each region [30]. Test regions ®; are matched to model
regions @,, in two steps, explained in the next two subsections. The matching
procedure allows for soft matches, i.e. more than one model region is matched
to the same test region, or vice versa.

3.1 Tentative Matches

For each test region T' € &, we first compute the Mahalanobis distance of the
descriptors to all model regions M € ®,,. Next, the following appearance simi-
larity measure is computed between T" and each of the 10 closest model regions:

sim(M,T) = NCC(M, T) + (1 — dRG]féé” 1),y 1)

where NCC is the normalized cross-correlation between the regions’ greylevel
patterns, while dRGB is the average pixel-wise Euclidean distance in RG B color-
space after independent normalization of the 3 colorbands (necessary to achieve
photometric invariance). Before computation, the two regions are aligned by the
affine transformation mapping 7" to M.
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Fig. 2. Left: case-study, with model image (top), and test image (bottom). Middle: a
close-up with 3 initial matches. The two model regions on the left are both matched to
the same region in the test image. Note the small occluding rubber on the spoon. Right-
top: the homogeneous coverage 2. Right-bottom: a support region (dark), associated
sectors (lines) and candidates (bright).

Each of the 3 test regions most similar to 7" above a low threshold t; are
considered tentatively matched to T. Repeating this operation for all regions
T € &y, yields a first set of tentative matches. At this point, every test region
could be matched to either none, 1, 2 or 3 model regions.

3.2 Refinement and Re-thresholding

Since all regions are independently extracted from the two images, the geometric
registration of a correct match is often not optimal. Two matching regions often
do not cover exactly the same physical surface, which lowers their similarity.
The registration of the tentative matches is now refined using our algorithm [6],
that efficiently looks for the affine transformation that maximizes the similarity.
This results in adjusting the region’s location and shape in one of the images.
Besides raising the similarity of correct matches, this improves the quality of the
forthcoming expansion stage, where new matches are constructed based on the
affine transformation of the initial ones.

After refinement, the similarity is re-evaluated and only matches scoring above
a second, higher threshold ¢, are kept! . Refinement tends to raise the similarity
of correct matches much more than that of mismatches. The increased separa-
tion between the similarity distributions makes the second thresholding more
effective. At this point, about 1/3 to 1/2 of the tentative matches are left.

! The R, G, B colorbands range in [0, 255], so sim is within [—4.41, 2]. A value of 1.0 indi-
cates good similarity. In all experiments the matching thresholds are ¢t; = 0.6, t2 = 1.0.
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3.3 Motivation

The obtained set of matches usually still contains soft matches, i.e. more than
one region in @, is matched to the same region in @, or vice versa. This con-
trasts with previous works [1,12,15,18,30], but there are two good reasons for it.
First, the scene might contain repeated, or visually similar elements. Secondly,
large viewpoint and scale changes cause loss of resolution which results in a less
accurate geometric correspondence and a lower similarity. When there is also
extensive clutter, it might be impossible, based purely on local appearance [22],
to decide which of the best 3 matches is correct, as several competing regions
might appear very similar, and score higher than the correct match. A classic
1-to-1 approach may easily be distracted and fail to produce the correct match.

The proposed process outputs a large set of plausible matches, all with a rea-
sonably high similarity. The goal is to maximize the number of correct matches,
even at the cost of accepting a substantial fraction of mismatches. This is im-
portant in difficult cases, when only a few model regions are re-extracted in the
test image, because each correct match can start an expansion which will cover
significant parts of the object.

Figure 2-left shows the case-study, for which 3 correct matches out of 217
are found (a correct-ratio of 3/217). The large scale change, combined with the
modest resolution (720x576), causes heavy image degradation which corrupts
edges and texture. In such conditions only a few model regions are re-extracted
in the test image and many mismatches are inevitable. In the rest of the chapter,
we refer to the current set of matches as the configuration I.

How to proceed ? Global, robust geometry filtering methods, like detecting
outliers to the epipolar geometry through RANSAC [29] fail, as they need a min-
imal portion of inliers of about 1/3 [3,12]. Initially, this may very well not be the
case. Even if we could separate out the few correct matches, they would probably
not be sufficient to draw reliable conclusions about the presence of the object.
In the following sections, we explain how to gradually increment the number of
correct matches and simultaneously decrease the number of mismatches.

4 Early Expansion

4.1 Coverage of the Model Image

We generate a grid {2 of overlapping circular regions densely covering the model
image I,,, (figure 2-top-right). In our implementation the grid is composed of a
first layer of regions of radius 25 pixels, spaced 25 pixels, and a second layer with
radius 13 pixels and spaced 25 pixels 2. No regions are generated on the black
background. According to various experiments, this choice of the parameters
is not crucial for the overall recognition performance. The choice of the exact
grid pattern, and consequently the number of regions in {2, trades segmentation
quality for computational cost, and could be selected based on the user’s desires.

2 These values are for an image of 720x576 pixels, and are proportionally adapted for
images of other sizes.
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At this point, none of the regions in 2 is matched to the test image I;. The
expansion phases will try to construct in I; as many regions corresponding to
them as possible.

4.2 Propagation Attempt

We now define the concept of propagation attempt which is the basic building-
block of the expansion phases and will be used later. Consider a region C,
in model image I,, without match in the test image I; and a nearby region
Sm, matched to S;. If C), and S, lie on the same physical facet of the object,
they will be mapped to I; by similar affine transformations. The support match
(Sm, St) attempts to propagate the candidate region C,, to I, as follows:

1. Compute the affine transformation A mapping S,, to S;.
2. Project C,, to I; via A : Cy = AC,,.

The benefits of exploiting previously established geometric transformations
was also noted by [23].

4.3 Early Expansion

Propagation attempts are used as a basis for the first expansion phase as follows.
Consider as supports {S? = (S¢,,5)} the soft-matches configuration I', and as
candidates A the coverage regions §2. For each support region S¢, we partition
I,,, into 6 circular sectors centered on the center of S? (figure 2-bottom-right).

Each S¢, attempts to propagate the closest candidate region in each sector. As
a consequence, each candidate C,,, has an associated subset I'c,, C I" of supports

that will compete to propagate it. For a candidate C,, and each support S’ in
ch do:

1. Generate C} by attempting to propagate C,, via S°.

2. Refine C}. If C} correctly matches C,,, this adapts it to the local surface
orientation (handles curved and deformable objects) and perspective effects
(the affine approximation is only valid on a local scale).

3. Compute the color transformation Thop = {sr, sc,sp} between S! and
S¢. This is specified by the scale factors on the three colorbands.

4. Evaluate the quality of the refined propagation attempt, after applying the
color transformation Thqp

sim; = sim(Cp, Ct, Thap) =

i i dRGB(TheCm,Ch
NCC(ThapCm, Cf) + (1 — (Thep@m.C1))

Applying T}éG p allows to use the unnormalized similarity measure sim, be-
cause color changes are now compensated for. This provides more discrimi-
native power over using sim.
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We retain CP¢*!, with best = argmax; sim;, the best refined propagation at-
tempt. Cy, is considered successfully propagated to CP¢*! if simpes; > t2 (the
matching threshold). This procedure is applied for all candidates Cy,, € A.

Most support matches may actually be mismatches, and many of them typi-
cally lie around each of the few correct ones (e.g. several matches in a single
soft-match, figure 2-middle). In order to cope with this situation, each support
concentrates its efforts on the nearest candidate in each direction, as it has the
highest chance to undergo a similar geometric transformation. Additionally, every
propagation attempt is refined before evaluation. Refinement raises the similarity
of correctly propagated matches much more than the similarity of mispropagated
ones, thereby helping correct supports to win. This results in a limited, but con-
trolled growth, maximizing the chance that each correct match propagates, and
limiting the proliferation of mispropagations. The process also restricts the num-
ber of refinements to at most 6 per support (contains computational cost).

For the case-study, 113 new matches are generated and added to the configu-
ration I'. 17 of them are correct and located around the initial 3 (figure 5, middle
of top row). The correct-ratio of I" improves to 20/330, but it is still very low.

5 Early Contraction

The early expansion guarantees good chances that each initial correct match
propagates. As initial filter, we discard all matches that did not succeed in prop-
agating any region. The correct-ratio of the case-study improves to 20/175 (no
correct match is lost), but it is still too low for applying a global filter. Hence,
we developed the following local filter.

A local group of regions in the model image have uniform shape, are arranged
on a grid and intersect each other with a specific pattern. If all these regions are
correctly matched, the same regularities also appear in the test image, because
the surface is contiguous and smooth (regions at depth discontinuities cannot be
correctly matched anyway). This holds for curved or deformed objects as well,
because the affine transformation varies slowly and smoothly across neighboring
regions (figure 3-left). On the other hand, mismatches tend to be randomly
located over the image and to have different shapes.

We propose a local filter based on this observation. Let { N, } be the neighbors
of a region R,, in the model image. Two regions A, B are considered neighbors if
they intersect, i.e. if Area(A () B) > 0. Only neighbors which are actually matched
to the test image are considered. Any match (R,,, R;) is removed from I" if

Area(Rm N’ Area(R: Nf
Z} N Nm) (ReNY)

_ . 2
Area(Rnm) Area(R:) >t 2)

{NG}

with ¢, some threshold?. The filter, illustrated in figure 3-middle, tests the preser-
vation of the pattern of intersections between R and its neighbors (the ratio
of areas is affine invariant). Hence, a removal decision is based solely on local

3 This is set to 1.3 in all our experiments.
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Area(Rm N3)

R N

Fig. 3. Left: the pattern of intersection between neighboring correct region matches
is preserved by transformations between the model and the test images, because the
surface is contiguous and smooth. Middle: the surface contiguity filter evaluates this
property by testing the conservation of the area ratios. Right: top: a candidate (thin)
and 2 of 20 supports within the large circular area; bottom: the candidate is propagated
to the test image using the affine transformation A of the support on the right (thick).
Refinement adapts the shape to the perspective effects (brighter). The other support
is mismatched to a region not visible in this close-up.

information. As a consequence, this filter is unaffected by the current, low overall
ratio of correct matches.

Shape information is integrated in the filter, making it capable of spotting in-
sidious mismatches which are roughly correctly located, yet have a wrong shape.
This is an advantage over the (semi-) local filter proposed by [24], and later also
used by others [22,26], which verifies if a minimal amount of regions in an area
around R,, in the model image also match near R; in the test image.

The input regions need not be arranged in a regular grid, the filter applies
to a general set of (intersecting) regions. Note that isolated mismatches, which
have no neighbors in the model image, will not be detected. The algorithm can
be implemented to run in O((|I'] + z)log(|T"|)), with z < |I'|? the number of
region intersections [5, pp 202-203].

Applying this filter to the case-study brings the correct-ratio of I" to 13/58,
thereby greatly reducing the number of mismatches.

6 Main Expansion

The first early expansion and contraction phases brought several additional cor-
rect matches and removed many mismatches, especially those that concentrated
around the correct ones. Since I' is cleaner, we can now try a faster expansion.



154 V. Ferrari, T. Tuytelaars, and L. Van Gool

All matches in the current configuration I" are removed from the candidate
set A — A\I', and are used as supports. All support regions S?, in a circular
area* around a candidate C,, compete to propagate it:

1. Generate C} by attempting to propagate C,, via S®.
2. Compute the color transformation T, 5 of S°.
3. Evaluate sim; = sim(Cp,, C}, Thap)-

We retain CPs!| with best = argmax; sim; and refine it, yielding C/*. C,, is
considered successfully propagated to C/ if sim(Cy,, CF') > t, (figure 3-right).
This scheme is applied for each candidate.

In contrast to the early expansion, many more supports compete for the same
candidate, and no refinement is applied before choosing the winner. However,
the presence of more correct supports, now tending to be grouped, and fewer
mismatches, typically spread out, provides good chances that a correct support
will win a competition. In this process each support has the chance to propagate
many more candidates, spread over a larger area, because it offers help to all
candidates within a wide circular radius. This allows the system to grow a mass
of correct matches. Moreover, the process can jump over small occlusions or
degraded areas, and costs only one refinement per candidate. For the case-study,
185 new matches, 61 correct, are produced, thus lifting the correct-ratio of I" up
to 74/243 (31%, figure 5, second row).

7 Main Contraction

At this point the chances of having a sufficient number of correct matches for
applying a global filter are much better. We propose here a global filter based
on a topological constraint for triples of region matches. In contrast to the local
filter of section 5, this filter is capable of finding also isolated mismatches. The
next subsection introduces the constraint on which the filter is based, while the
following two subsections explain the filter itself and discuss its qualities.

7.1 The Sidedness Constraint

Consider a triple (R}, R2,, R2)) of regions in the model image and their matching
regions (R}, R?, R}) in the test image. Let ¢, be the center of region R} (v €
{m,t}). The function

side(Ry, Ry, Ry) = sign((c} x ¢5)cy) ®3)

takes value —1 if ¢! is on the right side of the directed line ¢2 x c2, going from
c2 to ¢3, or value 1 if it’s on the left side. The equation

side(Ry,, Ry, Ry,) = side(R;, R}, RY) (4)

4 In all experiments the radius is set to 1/6 of the image size.
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states that ¢! should be on the same side of the line in both views (figure 4-
left). This sidedness constraint holds for all correctly matched triples of coplanar
regions, because in this case property (3) is viewpoint invariant. The constraint
is valid also for most non-coplanar triples. A triple violates the constraint if at
least one of the three regions is mismatched, or if they are not coplanar and
there is important camera translation in the direction perpendicular to the 3D
plane containing their centers (parallaz-violation). This can create a parallax
effect strong enough to move c! to the other side of the line. Nevertheless, this
phenomenon typically affects only a small minority of triples. Since the camera
can only translate in one direction between two views, the resulting parallax can
only corrupt few triples, because those on planes oriented differently will not be
affected.

The region matches violate or respect equation (4) independently of the order
in which they appear in the triple. The three points should be cyclically ordered
in the same orientation (clockwise or anti-clockwise) in the two images in order
to satisfy (4).

Topological configurations of points and lines were also used by Tell and Carls-
son [28] in the wide-baseline stereo context, as a mean for guiding the matching
process.

7.2 Topological Filter

A triple including a mismatched region has higher chances to violate the sid-
edness constraint. When this happens, it indicates that probably at least one
of the matches is incorrect, but it does not tell which one(s). While one triple
is not enough to decide, this information can be recovered by considering all
triples simultaneously. By integrating the weak information each triple provides,
it is possible to robustly discover mismatches. The key idea is that we expect

incorrectly located regions to be involved in a higher share of violations.
The constraint is checked for all unordered triples (R', R’, RF),R", RV, R* ¢
I'. The share of violations for a region match R’ is

erropo(R) = - Y [side(RL,, R, RY) — side(Ri, B, RY)|  (5)
v Ri,RF€\R*,j>k
with v = (n — 1)(n — 2)/2,n = |I']. erriopo(R’) € [0, 1] because it is normalized
w.r.t. the maximum number of violations v any region can be involved in.

The topological error share (5) is combined with an appearance term, giving
the total error

errtot(Ri) = errtopo(Ri) + (to — sim(Rin7 R;))

The filtering algorithm starts from the current set of matches I', and then iter-
atively removes one match at a time as follows:

1. (Re-)compute erryor(R?) for all R* € T
2. Find the worst match RY, with w = arg max; erry(R?)
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3. If erryot (R™) > 0, remove RY from I'. R* will not be used for the computa-
tion of erryopo in the next iteration. Iterate to 1.
If erryo; (RY) < 0, or if all matches have been removed, then stop.

Fig.4. Sidedness constraints. Left: ¢! should be on the same side of the di-
rected line from ¢? to ¢® in both images. Right: the constraints hold also for
deformed objects. The small arrows indicate 'to the right’ of the directed lines
A— BB —- C,C - D,D — A.

At each iteration the most probable mismatch RY is removed. During the first it-
erations many mismatches might still be present. Therefore, even correct matches
might have a moderately large error, as they take part in triples including mis-
matches. However, mismatches are likely to have an even larger error, because
they are involved in the very same triples, plus other violating ones. Hence, the
worst mismatch R, the region located in I; farthest from where it should be,
is expected to have the largest error. After removing R™ all errors decrease,
including the errors of correct matches, because they are involved in less triples
containing a mismatch. After several iterations, ideally only correct matches are
left. Since these have only a low error, due to occasional parallax-violations, the
algorithm stops.

The second term of erri,; decreases with increasing appearance similarity,
and it vanishes when sim(R? , R!) = t, the matches acceptance threshold. The
removal criterion erry,; > 0 expresses the idea that topological violations are
accepted up to the degree to which they are compensated by high similarity.
This helps finding mismatches which can hardly be judged by only one cue.
A typical mismatch with similarity just above to, will be removed unless it is
perfectly topologically located. Conversely, correct matches with erriopo > 0
due to parallax-violations are in little danger, because they typically have good
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similarity. Including appearance makes the filter more robust to low correct-
ratios, and remedies the potential drawback (parallax-violations) of a purely
topological filter [6].

In order to achieve good computational performance, we store the terms of
the sum in function (5) during the first iteration. In the following iterations, the
sum is quickly recomputed by retrieving and adding up the necessary terms. This
makes the computational cost almost independent of the number of iterations.
The algorithm can be implemented to run in O(n?log(n)), based on the idea of
constructing, for each point, a list with a cyclic ordering of all other points (a
complete explanation is given in [5, pp. 208-211]).

7.3 Properties and Advantages

The proposed filter has various attractive properties, and offers several advan-
tages over detecting outliers to the epipolar geometry through RANSAC [29],
which is traditionally used in the matching literature [13,15,22,23,30]. In the
following, we refer to it as RANSAC-EG. The main two advantages are (more
discussion in [5, pp. 75-77]):

It allows for non-rigid deformations. The filter allows for non-rigid deformations,
like the bending of paper of cloth, because the structure of the spatial arrange-
ments, captured by the sidedness constraints, is stable under these transforma-
tions. As figure 4-right shows, sidedness constraints are still respected even in the
presence of substantial deformations. Other filters, which measure a geometrical
distance error from an estimated model (e.g. homography, fundamental matrix)
would fail in this situation. In the best case, several correct matches would be
lost. Worse yet, in many cases the deformations would disturb the estimation
of the model parameters, resulting in a largely random behavior. The proposed
filter does not try to capture the transformations of all matches in a single, over-
all model, but it relies instead on simpler, weak properties, involving only three
matches each. The discriminative power is then obtained by integrating over all
measurements, revealing their strong, collective information.

It is insensitive to inaccurate locations. The regions’ centers need not be exactly
localized, because err¢qp, varies slowly and smoothly for a region departing from
its ideal location. Hence, the algorithm is not affected by perturbations of the
region’s locations. This is precious in the presence of large scale changes, not com-
pletely planar regions, or with all kinds of image degradation (motion blur, etc.),
where localization errors become more important. In RANSAC-EG instead, the
point must lie within a tight band around the epipolar line. Worse yet, inaccurate
localization of some regions might compromise the quality of the fundamental
matrix, and therefore even cause rejection of many accurate regions [33]. In [5,
pp. 84-85] we report experiments supporting this point, where the topological
filter could withstand large random shifts on the regions’ locations (about 25
pixels, in a 720x576 image).
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7.4 Main Contraction on the Case-Study

After main expansion, the correct-ratio of the case-study was of 74/243. Ap-
plying the filter presented in this section brings it to 54/74, which is a major
improvement (figure 5 second row). 20 correct matches are lost, but many more
mismatches are removed (149). The further processing will recover the correct
matches lost and generate even more.

8 Exploring the Test Image

The processing continues by iteratively alternating main expansion and main
contraction phases.

1. Do a main expansion phase. All current matches I' are used as supports.
This produces a set of propagated region matches 1", which are added to the
configuration: I' — (I'U7).

2. Do a main contraction phase on I'. This removes matches from I.

3. If at least one newly propagated region survives the contraction, i.e. if
[T I'| > 0, then iterate to point 1, after updating the candidate set to
contain A «— (2\I"), all original candidate regions {2 which are not yet in
the configuration. Stop if no newly propagated regions survived, or if all
regions {2 have been propagated.

In the first iteration, the expansion phase generates some correct matches,
along with some mismatches. Because a correct match tends to propagate more
than a mismatch, the correct ratio increases. The first main contraction phase
removes mostly mismatches, but might also lose several correct matches: the
amount of noise (percentage of mismatches) could still be high and limit the
filter’s performance. In the next iteration, this cleaner configuration is fed into
the expansion phase again which, less distracted, generates more correct matches
and fewer mismatches. The new correct matches in turn help the next contraction
stage in taking better removal decisions, and so on. As a result, the number,
percentage and spatial extent of correct matches increase at every iteration,
reinforcing the confidence about the object’s presence and location (figure 6).
The two goals of separating correct matches and gathering more information
about the object are achieved at the same time.

Correct matches erroneously killed by the contraction step in an iteration get
another chance during the next expansion phase. With even fewer mismatches
present, they are probably regenerated, and this time have higher chances to
survive the contraction (higher correct-ratio, more positive evidence present).

Thanks to the refinement, each expansion phase adapts the shape of the
newly created regions to the local surface orientation. Thus the whole explo-
ration process follows curved surfaces and deformations.

The exploration procedure tends to ‘implode’ when the object is not in the
test image, typically returning only a few matches. Conversely, when the object
is present, the approach fills the visible portion of the object with many high
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first main contraction 54/74

second main contraction 150/174 contours of the final set of matches

Fig. 5. Evolution of I" for the case-study. Top rows: correct matches; bottom rows:
mismatches.
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Fig. 6. The number of correct matches for the case-study increases at every iteration
(compare the points after each contraction phase)

confidence matches. This yields high discriminative power and the qualitative
shift from only detecting the object to knowing its extent in the image and which
parts are occluded. Recognition and segmentation are two aspects of the same
process.

In the case-study, the second main expansion propagates 141 matches, 117
correct, which is better than the previous 61/185. The second main contraction
starts from 171/215 and returns 150/174, killing a lower percentage of correct
matches than in the first iteration. After the 11th iteration 220 matches cover the
whole visible part of the object (202 are correct). Figure 5 depicts the evolution
of the set of matches I'. The correct matches gradually cover more and more
of the object, while mismatches decrease in number. The system reversed the
situation, by going from only very few correct matches in a large majority of
mismatches, to hundreds of correct matches with only a few mismatches. Notice
the accuracy of the final segmentation, and in particular how the small occluding
rubber has been correctly left out (figure 5 bottom-right).

9 Results

9.1 Recognition from Still Images

The dataset in this subsection® consists of 9 model objects and 23 test images. In
total, the objects appear 43 times, as some test images contain several objects.
To facilitate the discussion, the images are referred to by their coordinates as
in figure 7, where the arrangement is chosen so that a test image is adjacent to
the model object(s) it contains. There are 3 planar objects, each modeled by a
single view, including a Kellogs box® and two magazines, Michelle (figure c2)
and Blonde (analog model view). Two objects with curved shapes, Xmas (bl)
and Ovo (e2), have 6 model views. Leo (d3), Car (a2), Suchard (d1) feature more
complex 3D shapes and have 8 model views. Finally, one frontal view models
the last 3D object, Guard (b3). Multiple model views are taken equally spaced
around the object. The contributions from all model views of a single object
are combined by superimposing the area covered by the final set of matched
regions (to find the contour), and by summing their number (detection criterion).

® The dataset is available at www.vision.ee.ethz.ch/~ferrari.
5 The kellogs box is used throughout the chapter as a case-study.
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Fig. 7. Recognition results (see text)
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All images are shot at a modest resolution (720x576) and all experiments are
conducted with the same set of parameters. In general, in the test cases there
is considerable clutter and the objects appear smaller than in the models (all
model images have the same resolution as the test images and they are shown
at the same size).

Tolerance to non-rigid deformations is shown in c1, where Michelle is simul-
taneously strongly folded and occluded. The contours are found with a good
accuracy, extending to the left until the edge of the object. Note the extensive
clutter. High robustness to viewpoint changes is demonstrated in c¢3, where Leo
is only half visible and captured in a considerably different pose than any of
the model views, while Michelle undergoes a very large out-of-plane rotation
of about 80 degrees. Guard, occluding Michelle, is also detected in the image,
despite a scale change of factor 3. In d2, Leo and Owvo exhibit significant view-
point changes, while Suchard is simultaneously scaled by factor 2.2 and 89%
occluded. This very high occlusion level makes this case challenging even for a
human observer. A scale change of factor 4 affecting Suchard is illustrated in el.
In figure al, Xmas is divided in two by a large occluder. Both visible parts are
correctly detected by the presented method. On the right side of the image, Car
is found even if half occluded and very small. Car is also detected in spite of a
considerable viewpoint change in a3. The combined effects of strong occlusion,
scale change and clutter make b2 an interesting case. Note how the boundaries
of Xmas are accurately found, and in particular the detection of the part behind
the glass. As a final example, 8 objects are detected at the same time in e3 (for
clarity, only 3 contours are shown). Note the correct segmentation of the two
deformed magazines and the simultaneous presence of all the aforementioned
difficulties.

Figure 8-bottom-left presents a close-up on one of 93 matches produced be-
tween a model view of Xmas (left) and test case b2 (right). This exemplifies
the great appearance variation resulting from combined viewpoint, scale and il-
lumination changes, and other sources of image degradation (here a glass). In
these cases, it is very unlikely for the region to be detected by the initial region
extractor, and hence traditional methods fail.

As a proof of the method’s capability to follow deformations, we processed the
case in figure 8-bottom-right starting with only one match (dark). 356 regions,
covering the whole object, were produced. Each region’s shape fits the local
surface orientation (for clarity, only 3 regions are shown).

The performance of the system was quantified by processing all pairs of model-
object and test images, and counting the resulting number of region matches.
The highest ROC curve in figure 8-top-left depicts the detection rate versus
false-positive rate, while varying the detection threshold from 0 to 200 matches.
An object is detected if the number of produced matches, summed over all its
model views, exceeds this threshold. The method performs very well, and can
achieve 98% detection with 6% false-positives. For comparison, we processed
the dataset also with 4 state-of-the-art affine region extractors [1,15,18,30], and
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Fig. 8. Top: left: ROC plot. False-positives on the X-axis, detection rate on the Y-axis;
middle: distribution of scores for our method (percentage; bright = positive cases; dark
= negative cases); right: for the traditional matching of the regions of Matas et al.
Bottom: left: close-up on one match of case b2; right: starting from the black region
only, the method covers the magazine with 365 regions (3 shown).

described the regions with the SIFT [12] descriptor” , which has recently been
demonstrated to perform best [4]. The matching is carried out by the "unambigu-
ous nearest-neighbor’ approach® advocated in [1,12]: a model region is matched
to the region of the test image with the closest descriptor if it is closer than 0.7
times the distance to the second-closest descriptor (the threshold 0.7 has been
empirically determined to optimize results). Each of the central curves illustrates
the behavior of a different extractor. As can be seen, none is satisfactory, which
demonstrates the higher level of challenge posed by the dataset and therefore
suggests that our approach can broaden the range of solvable object recognition
cases. Closer inspection reveals the source of failure: typically only very few, if
any, correct matches are produced when the object is present, which in turn is
due to the lack of repeatability and the inadequacy of a simple matcher under
such difficult conditions. The important improvement brought by the proposed
method is best quantified by the difference between the highest curve and the
central thick curve, representing the system we started from [30] "TVGO0 org’
in the plot).

T All region extractors and the SIFT descriptor are implementations of the respective
authors. We are grateful to J. Matas, K. Mikolajczyk, A. Zisserman, C. Schmid and
D. Lowe.

& We have also tried the standard approach, used in [15,4,18,30], which simply matches
two nearest-neighbors if their distance is below a threshold, but it produced slightly
worse results.
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Figure 8-top-middle shows a histogram of the number of final matches (recog-
nition score) output by our system. The scores assigned when the object is in the
test image (positive cases) are much higher than when the object is absent (neg-
ative cases), resulting in very good discriminative power. As a comparison with
the traditional methods, the standard matching of regions of [18], based on the
SIFT descriptor, yields two hardly separable distributions (figure 8-top-right),
and hence the unsatisfactory performance in the ROC plot. Similar histograms
are produced based on the other feature extractors [1,15,30].

Fig. 9. Video retrieval results. The parts of the model-images not delineated by the
user are blanked out.

As last comparison, we consider the recent system [21], which constructs a 3D
model of each object prior to recognition. We asked the authors to process our
dataset. As they reported, because of the low number of model views, their sys-
tem couldn’t produce meaningful models, and therefore couldn’t perform recog-
nition. Conversely, we have processed the dataset of [21] with our complete
system (including multi-view integration [7]). It performed well, and achieved
95% detection rate for 6% false-positives (see [21] for more details).

9.2 Video Retrieval

In this experiment, the goal is to find a specific object or scene in a test video.
The object is only given as delineated by the user in one model image. In [26]
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another region-based system for video object retrieval is presented. However, it
focuses on different aspects of the problem, namely the organization of regions
coming from several shots, and weighting their individual relevance in the wider
context of the video. At the feature level, their work still relies solely on regions
from standard extractors.

Because of the different nature of the data, the system differs in a few points
from the object recognition one. At recognition time the test video is segmented
into shots, and a few representative keyframes are selected in each shot by the
algorithm of [19]. The object is then searched in each keyframe separately, by
a simplified version of the image exploration technique. Specifically, it has a
simple one-to-one nearest neighbor approach for the initial matching instead of
the soft-matching phase, there are no ‘early’ phases, and there is only one layer
of coverage regions. This simpler version runs faster (about twice as fast), though
it is not as powerful. It takes about 2 minutes to process a (object,keyframe)
pair on a common workstation (2.4 Ghz PC).

We present results on challenging, real-world video material, namely news
broadcast provided by the RTBF Belgian television. The data comes from 4
videos, captured on different days, each of about 20 minutes. The keyframes
have low resolution (672x528) and many of them are visibly affected by com-
pression artifacts, motion blur and interlacing effects. We selected 13 diverse
objects, including locations, advertising products, logos and football shirts, and
delineated each in one keyframe. Each object is searched in the keyframes of the
video containing its model-image. On average, a video has 325 keyframes, and
an object occurs 7.4 times. The number of keyframes not containing an object
(negatives), is therefore much greater than the number of positives, allowing to
collect relevant statistics. A total of 4236 (object keyframe) image pairs have
been processed.

Figure 9.1 show some example detections. A large piece of quilt decorated
with various flags (a2) is found in a3 in spite of non-rigid deformation, occlusion
and extensive clutter. An interesting application is depicted in bl-b2-b3. The
shirts of two football teams are picked out as query objects (b2), and the system
is asked to find the keyframes where each team is playing. In bl the Fortis shirt
is successfully found in spite of important motion blur (close-up in al). Both
teams are identified in b3, where the shirts appear much smaller and the Dexia
player is turned 45 degrees (viewpoint change on the shirt). The keyframe in
cl instead, has not been detected. Due to the intense blur, the initial matcher
does not return any correct correspondence. Robustness to large scale changes
and occlusion is demonstrated in a4, where the UN council, modeled in b4, is
recognized while enlarged by a scale factor 2.7, and heavily occluded (only 10%
visible). Equally intriguing is the image of figure c4, where the UN council is
seen from an opposite viewpoint. The large painting on the left of b4 is about
the only thing still visible in the test keyframe, where it appears on the right
side. The system matched the whole area of the painting, which suffers from
out-of-plane rotation. As a last example, a room with Saddam Hussein is found
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in figure c3 (model in ¢2). The keyframe is taken under a different viewpoint
and substantially corrupted by motion blur.

The retrieval performance is quantified by the detection rate and false-positive
rate, averaged over all objects. An object is detected if the number of final
matches, divided by the number of model coverage regions, exceeds 10% (de-
tections of model-keyframes are not counted). The system performs well, by
achieving an average detection rate of 82.4%, for a false-positive rate of 3.6%.
As a comparison, we repeated the experiment with [30], the method we started
from. It only managed a 33.3% detection rate, for a false-positive rate of 4.6%,
showing that our approach can substantially boost the performance of standard
affine invariant matching procedures.

10 Related Work

The presented technique belongs to the category of appearance-based object
recognition. Since it can extend any approach which matches affine invariant re-
gions between images, it is tightly related to this class of methods. The novelties
and improvements brought by our approach are enumerated in the introduction
section and demonstrated in the result section 9.

Beyond the realm of local invariant features, there are a few works which are
related to ours, in that they also combine recognition with segmentation. Leibe
and Schiele [10] present a method to detect an unknown object instance of a
given category and segment it from a test image. The category (e.g. cows) is
learnt from example instances (images of particular cows). However, the method
does not support changes in camera viewpoint or orientation. In [32], low-level
grouping cues based on edge responses, high-level cues from a part detector
and spatial consistency of detected parts, are combined in a graph partitioning
framework. The scheme is shown to recognize and segment a human body in
a cluttered image. However, the part detectors need a considerable number of
training examples, and the very parts to be learned are manually indicated (head,
left arm, etc.). Moreover, there is no viewpoint, orientation or scale invariance.
Both methods are suited for categorization, and not specialized in the recognition
of a particular objects.

While we believe our approach to be essentially original, some components are
clearly related to earlier research. The filter in section 7 is constructed around the
sidedness constraint. A similar constraint, testing the cyclic ordering of points,
was used for wide-baseline matching in [28]. Moreover, the ‘propagation attempt’
at the heart of the expansion phases is an evolution of the idea of ‘growing
matches’ proposed by [20,23,22]. While they use existing affine transformations
only to guide the search for further matches, our approach actively generates new
regions, which have not been originally extracted. This is crucial to counter the
repeatability problems stated in the introduction. Finally, a different, pixel-by-
pixel propagation strategy was previously proposed in [11], but it is applicable
only in case of small differences between the images.



Simultaneous Object Recognition and Segmentation by Image Exploration 167

11 Conclusion and Outlook

We have presented an approach to object recognition capable of solving partic-
ularly challenging cases. Its power roots in the ‘image exploration’ technique.
Every single correct match can lead to the generation of many correct matches
covering the smooth surface on which it lies, even when starting from an over-
whelming majority of mismatches. Hence, the method can boost the performance
of any algorithm which provides affine regions correspondences, because very few
correct initial matches suffice for reliable recognition. Moreover, the approximate
boundaries of the object are found during the recognition process, and non-rigid
deformations are explicitly taken into account, two features lacking in competing
approaches (e.g. [1,12,15,18,21,22,30]).

Some individual components of the scheme, like the topological filter and
GAMSs, are useful in their own right, and can be used profitably beyond the
scope of this chapter.

In spite of the positive points expressed above, our approach is not without
limitations. One of them is the computational expense: in the current imple-
mentation, a 2.4 Ghz computer takes about 4-5 minutes, on average, to process
a pair of model and test images. Although we plan a number of speedups, the
method is unlikely to reach the speed of the fastest other systems (the system
of Lowe [12] is reported to perform recognition within seconds). As another lim-
itation, our method is best suited for objects which have some texture, much
like the other recognition schemes based on invariant regions. Uniform objects
(e.g. a balloon) cannot be dealt with and seem out of the reach of this kind of
approaches. They should be addressed by techniques based on contours [4,25].
Hence, a useful extension would be to combine some sort of ‘local edge regions’
with the current textured regions. An important evolution is the systematic ex-
ploitation of the relationships between multiple overlapping model views. We
have tackled this issue in a separate publication [7]. Finally, using several types
of affine invariant regions simultaneously, rather than only those of [30], would
push the performance further upwards.
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