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Abstract therefore very sensitive to background clutter and pastial

clusion. Hence, global methods only consider test images
We present a novel Object Recognition approach basedwithout background, or necessitate a prior segmentation, a
on affine invariant regions. It actively counters the prob- task which has proven extremely difficult. Additionally; ro
lems related to the limited repeatability of the region de- bustness to large viewpoint changes is hard to achieve, be-
tectors, and the difficulty of matching, in the presence of cause the global object appearance varies in a complex and
large amounts of background clutter and particularly chal- unpredictable way (the object's geometry is unknown). Lo-
lenging viewing conditions. After producing an initial set cal methods counter problems due to clutter and occlusion
of matches, the method gradually explores the surround-py representing images as a collection of features exttacte
ing image areas, recursively constructing more and more pased on local information only (e.g. [28]). After the in-
matching regions, increasingly farther from the initialem fluential work of Schmid [26], who proposed the use of
This process covers the object with matches, and simulta-rotation-invariant features, there has been importaniuevo
neously separates the correct matches from the wrong onestion. Feature extractors have appeared [14, 16] which are in
Hence, recognition and segmentation are achieved at thevariant also under scale changes, and more recently recogni
same time. The approach includes a mechanism for capturtion under general viewpoint changes has become possible,
ing the relationships between multiple model views and ex-thanks to extractors adapting the complaténe shape of
ploiting these for integrating the contributions of thewi  the feature to the viewing conditions [1, 15, 17, 25, 34, 33].
at recognition time. This is based on an efficient algorithm Theseaffine invariantfeatures are particularly significant:
for partitioning a set of region matches into groups lying even though the global appearance variation of 3D objects
on smooth surfaces. Integration is achieved by measuringis very complex under viewpoint changes, it can be approx-
the consistency of configurations of groups arising from dif imated by simple affine transformations on a local scale,
ferent model views. Experimental results demonstrate thewhere each feature is approximately planare@ion). Lo-
stronger power of the approach in dealing with extensive cal invariant features are used in many recent works, and
clutter, dominant occlusion, and large scale and viewpoint provide the currently most successful paradigm for Object
changes. Non-rigid deformations are explicitly taken into Recognition (e.g. [14, 17, 20, 23, 33]). In the basic common
account, and the approximative contours of the object are scheme a number of features are extradtetbpendently
produced. All presented techniques can extend any viewfrom both a model and a test image, then characterized by
pointinvariant feature extractor. invariant descriptors and finally matched.

In spite of their success, the robustness and generality
1 Introduction of these approaches are limited by the repeatability of the
feature extraction, and the difficulty of matching corrgctl
The modern trend in Object Recognition has abandonedin the presence of large amounts of clutter and challeng-
model-based approaches (e.g. [2]), which require a 3Ding viewing conditions. Indeed, large scale or viewpoint
model of the object as input, in favor of appearance-basedchanges considerably lower the probability that any given
ones, where some example images suffice. Two kinds ofmodel feature is re-extracted in the test image. Simultane-
appearance-based methods exjgtibal andlocal. Global ously, occlusion reduces the number of visible model fea-
methods build an object representation by integrating in- tures. The combined effect is that only a small fraction of
formation over an entire image (e.g [4, 19, 30]), and are model features has a correspondence in the test image. This
*This research was supported by EC project VIBES, the Fun8da@ntific Re- fraction represents the maximal number of features _that can
search Flanders, and the IST Network of Excellence PASCAL be correctly matched. Unfortunately, at the same time ex-




tensive clutter gives rise to a large number of non-object gle correct initial match can expand to cover a smooth sur-
features, which disturb the matching process. As a final face withmanycorrect matches, even when starting from a
outcome of these combined difficulties, only a few, if any, large number of mismatches. This leads to filling the visible
correct matches are produced. Because these often comportion of the object with matches. Some interesting direct
together with many mismatches, recognition tends to fail. advantages derive from it. First, robustness to scale,-view
Even in easier cases, to suit the needs for repeatabilitypoint, occlusion and clutter are greatly enhanced, because
in spite of viewpoint changes, only a sparse setlisfin- most cases where traditional approaches generate only a
guishedeatures [20] are extracted. As a result, only a small few correct matches are now solvable. Secondly, discrimi-
portion of the object is typically covered with matches. native power is increased, because decisions about the ob-
Densely covering the visible part of the object is desirable ject's identity are based on information densely distiéioiut
as it increases thevidenceor its presence, which results over the entire portion of the object visible in the test imag
in higher detection power. Moreover, it would allow to find Thirdly, the approximate boundary of the object in the test
the contours of the object, rather than just its location. image is suggested by the final set of matches. Fourthly,
non-rigid deformations are explicitly taken into account.

Simultaneous recognition and segmentation In the first
part of the paper we tackle these problems with a new, pow-Integrating multiple model views When multiple model
erful technique to match a model view to the test image views are available, there usually are significant overlaps
which no longer relies solely on matching viewpoint invari- between the object parts seen by different views. In the sec-
ant features. We start by producing an initial large set of ond part of the paper, we extend our method to capture the
unreliable region correspondences, so as to maximize theelationships between the model views, and to exploit these
number of correct matches, at the cost of introducing manyfor integrating the contributions of the views during reeog
mismatches. Additionally, we generate a grid of regions nition. The main ingredient is the novel concept afraup
densely covering the model image. The core of the methodof aggregated matchg§SAM). A GAM is a set of region
then iteratively alternates betweempansionphases and  matches between two images, which are distributed over a
contractionphases. Each expansion phase tries to construcsmooth surface of the object. A set of matches, including
regions corresponding to the coverage ones, based on thanarbitrary amount of mismatches, can be partitioned into
geometric transformation of nearby existing matches. Con-GAMs. The more matches there are in a GAM, the more
traction phases try to remove incorrect matches, usingdilte likely it is that they are correct. Moreover, the matches in a
that tolerate non-rigid deformations. GAM are most often all correct, or all incorrect. When eval-
This scheme anchors on the initial matches and thenuating the correctness and inter-relations of sets of neatch
looks aroundthem trying to construct more. As new it is convenient to reason at the higher perceptual group
matches arise, they are exploited to construct even morejng level that GAMs offer: no longer consider unrelated re-
in a process which graduallgxploresthe test image, re- gion matches, but the collection of GAMs instead. Hence,
cursively constructing more and more matches, increasingl GAMs become the atomic unit, with their size carrying pre-
farther from the initial ones. At each iteration, the preesen  cious information. Moreover, the computational complexit
of the new matches helps the filter taking better removal de-of a problem can be reduced, because there are considerably
cisions. In turn, the cleaner set of matches makes the nexfewer relevant GAMs than region matches.
expansion more effective. As a result, the number, percent-  Concretely, multiple-view integration is achieved as fol-
age and extent of correct matches grow with every itera-lows. During modeling, the model views are connected
tion. The two closely cooperating processes of expansionby a number of region-tracks. At recognition time, each
and contraction gather more evidence about the presence ofhodel view is matched to the test image , and the result-
the objectandseparate correct matches from wrong o@ies  ing matches are partitioned into GAMs. The coherence of
the same timeHence, they achieve simultaneous recogni- a configuration of GAMs, possibly originating from differ-
tion and segmentation of the object. ent model views, is evaluated using the region tracks that
By constructing matches for the coverage regions, thespan the model views. We search for the most consistent
system succeeds in covering also image areas which are natonfiguration, covering the object as completely as possi-
interesting for the feature extractor or not discriminativ ble, and define a confidence score which strongly increases
enough to be correctly matched by traditional techniques.in the presence of compatible GAMs. In this fashion, the
During the expansion phases, the shape of each new regiodetection power improves over the simple approach of con-
is adapted to the local surface orientation, allowing the ex sidering the contribution of each model view independently
ploration process to follow curved surfaces and deforma- Moreover, incorrect GAMs are discovered because they do
tions (e.g. a folded magazine). not belong to the best configuration, thus improving the seg-
The basic advantage of our approach is that each sin-mentation.
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Figure 1:Phases of the image-exploration technique.

Paper structure. Sections 2 to 8 cover the first part: the

image-exploration technique to match a model view to the
test image. The integration of multiple model views is de-
scribed in the second part, sections 9 to 12. A discussion
of related work can be found in section 14, while experi-
mental results are given in section 13. Finally, section 15 &
closes the paper with conclusions and possible directions'®
for future research. Preliminary versions of this work have
appearedin [8, 7].

2 Overview of part I: simultaneous Figure 2:a) case-study, with model image (top), and test image

s . (bottom). b) a close-up with 3 initial matches. The two model
recognltlon and Segmentatlon regions on the left are both matched to the same region indsie t
image. Note the small occluding rubber on the spoon.

Figure 2a shows a challenging example, which is used as

case-study throughout the first part of the paper. There is a. ;
large scale change (factor 3.3), out-of-plane rotatioterex 3 Soit matChmg
Sive clutter and partial OC_CIUS'On' All thgse facto!’s mdies t The first stage is to compute an initial set of region matches
life of the feature extraction and matching algorithms hard between anodel imagd,,, and atest imagel,

A scheme of the approach is illustrated in figure 1. We  The region extraction algorithm [33] is applied to
build upon a multi-scale extension of the extractor of [33]. poth images independently, producing two sets of regions
However, the method works in conjunction with any affine ®,,,®,, and a vector of invariants describing each re-
invariant region extractor [1, 15, 17]. In the first phasef(  gjon [33]. Test regionsb, are matched to model regions
matching, we form a large set of initial region correspon- ¢, in two steps, explained in the next two subsections. The
dences. The goal is to obtain some correct matches also innatching procedure allows feoft matchesi.e. more than

difficult cases, even at the price of including alarge m&ori  one model region is matched to the same test region, or vice
of mismatches. Next, a grid of circular regions covering the \grga.

model image is generated (coinedverage regiorjs The
early expansiophase tries to propagate these coverage re-
gions based on the geometric transformation of nearby ini-
tial matches. Bypropagatinga region, we mean construct- For each test regiofif € ®, we first compute the Ma-
ing the corresponding one in the testimage. The propagatethalanobis distance of the descriptors to all model regions
matches and the initial ones are then passed through anovels ¢ ,,. Next, the following appearance similarity mea-

local filter, during theearly contractionphase, which re-  sure is computed betweeh and each of the 10 closest
moves some of the mismatches. The processing continuegnodel regions:

by alternating faster expansion phasewin expansiop -

where coverage regions are propagated over a larger area, 517, 7) — NCC(M, T) + (1 — dRGB(1M, T)) o)

with contraction phases based on a global filtaaip con- ’ ’ 100

traction). This filter exploits both topological arrangements where NCC is the normalized cross-correlation between

and appearance information, and tolerates-rigid defor-  the regions’ greylevel patterns, whilRGB is the average

mations pixel-wise Euclidean distance RG B color-space after in-
The ’early’ phases differ from the 'main’ phases in that dependent normalization of the 3 colorbands (necessary to

they are specialized to deal with the extremely low percent- achieve photometric invariance). Before computation, the

age of correct matches given by the initial matcher in par- two regions are aligned by the affine transformation map-

ticularly difficult cases. ping T' to M. This mixed measure is more discriminative

3.1 Tentative matches




thanNCC alone, which is the most common choice in the When there is also extensive clutter, it might be impossible
literature [20, 17, 33].NCC mostly looks at thepattern basedpurely on local appearance [24], to decide which of
structure and discards valuable color information. A green the best 3 matches is correct, as several competing regions
disc on a red background, and a bright blue disc on a darkmight appear very similar, and score higher than the correct
blue background would be very similar un@e€C. dRGB match. A classic 1-to-1 approach may easily be distracted
captures complementary properties. As it focusesalar and fail to produce the correct match.

correspondence, it would correctly score low the previous The proposed process outputs a large set of plausible
disc example. However, it would confuse a green disc on matches, all with a reasonably high similarity. The goabis t

a bright green background with a green cross on a brightmaximize the number of correct matches, even at the cost of
green background, a difference whisieC would spot. By accepting a substantial fraction of mismatches. This is im-
summing these two measures, we obtain a more robust ongortant in difficult cases, when only a few model regions are

which alleviates their complementary shortcomings. re-extracted in the test image, because each correct match
Each of the 3 test regions most similarfebove a low  can start an expansion which will cover significant parts of

thresholdt; are considered tentatively matchedZo Re- the object.

peating this operation for all regiols € ®;, yields a first Figure 2a shows the case-study, for which 3 correct

set oftentative matches At this point, every test region matches out of 217 are found ¢mrrect-ratio of 3/217).

could be matched to either none, 1, 2 or 3 model regions. The large scale change, combined with the modest reso-
lution (720x576), causes heavy image degradation which
. . corrupts edges and texture. In such conditions only a few
3.2 Refinement and re-thresholding model regions are re-extracted in the test image and many

Since all regions are independently extracted from the two Mismatches are inevitable. In the rest of the paper, we refer
images, the geometric registration of a correct match is of- to the current set of matches as ttumfigurationl”.

ten not optimal. Two matching regions often do not cover ~How to proceed ? Global, robust geometry filtering
exactly the same physical surface, which lowers their sim- methods, like detecting outliers to the epipolar geometry
ilarity. The registration of the tentative matches is new  through RANSAC [32] fail, as they need a minimal portion
finedusing our algorithm [6], that efficiently looks for the Of inliers of aboutl /3 [3, 14]. Initially, this may very well
affine transformation that maximizes the similarity. This not be the case. Even if we could separate out the few cor-
results in adjusting the region’s location and shape in onerect matches, they would probably not be sufficient to draw
of the images. Besides raising the similarity of correct reliable conclusions about the presence of the object.dn th
matches’ this improves the qua“ty of the forthcom'ﬁ)g fO"OWing SeCtionS, we eXplain how to gl’adua”y increment
pansionstage, where new matches are constructed based othe number of correct matches and simultaneously decrease
the affine transformation of the initial ones. the number of mismatches.

After refinement, the similarity is re-evaluated and only
matches scoring above a second, higher thresholare
kept! . Refinement tends to raise the similarity of correct
matches much more than that of mismatches. The increasegl 1 C fth del i
separationbetween the similarity distributions makes the overage of the model Image

second thresholding more effective. At this point, akigit We generate a grid2 of overlapping circular regions

4 Early expansion

to 1/2 of the tentative matches are left. densely covering the model imadsg, (figure 3a). In our
implementation the grid is composed of a first layer of re-
3.3 Motivation gions of radius 25 pixels, spaced 25 pixels, and a second

layer with radius 13 pixels and spaced 25 pixeldNo re-
The obtained set of matches usually still contagudt gions are generated on the black background. According
matchesi.e. more than one region ifh,,, is matched to  to various experiments, this choice of the parameters is not
the same region i®;, or vice versa. This contrasts with crucial for the overall recognition performance. The clkoic
previous works [1, 14, 17, 20, 33], but there are two good of the exact grid pattern, and consequently the number of
reasons for it. First, the scene might contain repeated, orregions in(, trades segmentation quality for computational
visually similar elements. Secondly, large viewpoint and cost, and could be selected based on the user’s desires.
scale changes cause loss of resolution which results isales At this point, none of the regions 0 is matched to the
accurate geometric correspondence and a lower similarity.test imagel;. The expansion phases will try to construct in
I, as many regions corresponding to them as possible.

1The R,G, B colorbands range in0,255], so sim is within
[—4.41,2]. A value of1.0 indicates good similarity. In all experiments 2These values are for an image of 720x576 pixels, and are giropo
the matching thresholds ate = 0.6,¢> = 1.0. ally adapted for images of other sizes.
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Figure 3:a) the homogeneous coverafe b) a support region
(dark), associated sectors (lines) and candidates (byight

4.2 Propagation attempt

We now define the concept gfopagation attemptvhich
is the basic building-block of the expansion phases and will
be used later. Consider a regi6h, in model imagel,,

without match in the test |m§g@ and a nearby reg'()ﬁm* Figure 4: a) early propagation generates 17 correct matches
matched tb;. If Cr, andsSy, lie on the same physical facet  right) out of 113. These are located around the initial 3reot

of the object, they will be mapped th by similar affine  matches (dark). b) the configuration after early expansias 20
transformations. Theupportmatch(S,,, S;) attempts to  correct matches (bright) and 310 mismatches (dark).
propagatethe candidateregionC, to I; as follows:

1. Compute the affine transformatiehmapping$,, to 4. Evaluate the quality of the refined propagation attempt,
St. after applying the color transformatidr, . 5

2. ProjectC,, to I, via A : Cy = AC,,.

sim; = sim(Cy,, Cf, Thep) =
. . . . i i dRGB(T% ¢ 5 Cm,CY)
The benefits of exploiting previously established geo- NCC(TrapCm, Ct) + (1 — ——H5F——)

metric transformations was also noted by [25]. i . ) ,
Applying T} 5 allows to use the unnormalized sim-

ilarity measuresim, because color changes are now
compensated for. This provides more discriminative

Propagation attempts are used as a basis for the first ~ POWErover usingim.

expansion phase as follows. Consider as supports best )

(St = (Si,S)} the soft-matches configuratidh and Ve retainCy*", with best = argmax; sim;, the best re-

as candidated the coverage regior@. For each support fined propagatngnt attempt,, is considered successfully

regionSi, we partitionZ,,, into 6 circular sectors centered ~Propagated t@y**" if simyes: > t2 (the matching thresh-

on the center o8’ (figure 3b) old). This procedure is applied for all candidafgs < A.
EachSi, attempts to propagate the closest candidate re- Most support matches may actually be mismatches, and

gion in each sector. As a consequence, each candiiate Many of them typically lie around each of the few correct

4.3 Early expansion

has an associated subdgt  C T of supports that will ~ ONes (e.g. several r_natches i_n as_ingle soft-match, figure 2b)
competdo propagate it. For a candidaté, and each sup- In ordc_ar to cope with this situation, gach §upport concen-
portStinI'¢,, do: trates its efforts on the nearest candidate in each dirgctio
_ _ as it has the highest chance to undergo a similar geometric
1. Generat€’; by attempting to propagate,, via S*. transformation. Additionally, every propagation atterigpt

refined before evaluation. Refinement raises the similarity
of correctly propagated matches much more than the sim-
ilarity of mispropagated ones, thereby helping correct sup
ports to win. This results in alimited, but controlled growt
maximizing the chance that each correct match propagates,

2. RefineC;. If C} correctly matches’,,, this adapts
it to the local surface orientation (handles curved and
deformable objects) and perspective effects (the affine
approximation is only valid on a local scale).

3. Compute the color transformatiol’y,; = and limiting the proliferation of mispropagations. The pro
{sr,sc,sp} betweenS! and Si. This is speci- cess also restricts the number of refinements to at most 6
fied by the scale factors on the three colorbands. per support (contains computational cost).
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Figure 5: Surface contiguity filter. a) the pattern of intersection
between neighboring correct region matches is preservechbg-

formations between the model and the test images, becaase th

surface is contiguous and smooth. b) the filter evaluatespiap-
erty by testing the conservation of the area ratios.

match(R,,, R;) is removed fronT if

Area(R: (| N/)
Area(Ry)

>

N}

’Area(Rm NN.) B >t (2)

Area(Rm)

with t, some threshold. The filter, illustrated in figure 5b,
tests the preservation of the pattern of intersectionsdetw

R and its neighbors (the ratio of areas is affine invariant).
Hence, a removal decision is based solelylaral infor-
mation. As a consequence, this filter is unaffected by the
current, low overall ratio of correct matches.

Shape information is integrated in the filter, making it ca-
pable of spotting insidious mismatches which are roughly
correctly located, yet have a wrong shape. This is an ad-
vantage over the (semi-) local filter proposed by [26], and
later also used by others [24, 29], which verifies if a mini-
mal amount of regions in an area arouRg, in the model
image also match nedi, in the test image.

The input regions need not be arranged in a regular grid,
the filter applies to a general set of (intersecting) regions
Note that isolated mismatches, which have no neighbors in
the model image, will not be detected. The algorithm can be
implemented to run i@ ((|T|+ ) log(|T|)), with z < |T'|2

For the case-study, 113 new matches are generated anghe number of region intersections [5, pp 202-203].

added to the configuratiofi. 17 of them are correct and

Applying this filter to the case-study brings the correct-

located around the initial 3 (figure 4a). The correct-rafio 0 ratig of I to 13/58, thereby greatly reducing the number of

T"improves to 20/330 (figure 4b), but it is still very low.

5 Early contraction

mismatches.

6 Main expansion

The early expansion guarantees good chances that each inirhe first early expansion and contraction phases brought
tial correct match_propagates. As initial filte_r, we disca_rd several additional correct matches and removed many mis-
all matches tha_t did not succeed in propagating any region.matches, especially those that concentrated around the cor
The correct-ratio of the case-study improves to 20/175 (N0 act ones. SincE is cleaner, we can now try a faster expan-
correct match is lost), but it is still too low for applying a gjgn.

global filter. Hence, we developed the following local filter All matches in the current configuratidhare removed

A local group of regions in the model image have uni- from the candidate set — A\T, and are used as supports.
form shape, are arranged on a grid and intersect each otheg|| support regionsS:, in a circular ared around a candi-
with a specific pattern. If all these regions are correctly gatec,, compete to propagate it:
matched, the same regularities also appear in the test jmage
because the surface is contiguous and smooth (regions at 1, Generat€} by attempting to propagatg,, via S°.
depth discontinuities cannot be correctly matched anyway) , .

This holds for curved or deformed objects as well, because 2. Compute the color transformati@,, ; of S°.

the affine transformation varies slowly and smoothly across
neighboring regions (figure 5a). On the other hand, mis-
matches tend to be randomly located over the image and t
have different shapes.

We propose a novel local filter based on this observation.
Let {N:} be the neighbors of a regioR,, in the model
image. Two regionsl, B are considered neighbors if they
intersect, i.e. ifArea(A (] B) > 0. Only neighbors which 3This is set to 1.3 in all our experiments.
are actually matched to the test image are considered. Any “In all experiments the radius is set1g6 of the image size.

3. Evaluatesim; = sim(Chy,, C§7T}éGB)-

QAve retainCPest, with best = arg max; sim; and refine it,
yielding C[ef. C, is considered successfully propagated
o CI if sim(Cyp, C7') > t, (figure 6). This scheme is
applied for each candidate.




takes value-1 if ¢! is on the right side of the directed line
c2 x c3, going frome? to 3, or valuel if it's on the left
side. The equation

side(R,,, Ry, R,,) = side(R;, R}, ) (4)

states that! should be on the same side of the line in both
views (figure 7). Thisidedness constraihblds for all cor-
rectly matched triples of coplanar regions, because in this
case property (3) is viewpoint invariant. The constraint is
_ valid also for most non-coplanartriples. A triple violatbe
Figure 6: Left: a candidate (thin) and 2 of 20 supports within  constraint if at least one of the three regions is mismatched
the large circular area. Right: the candidate is propagatedhe or if they are not coplanar and there is important camera
testimage using the affine transformatidrof the supportonthe 5 nqjation in the direction perpendicular to the 3D plane
right (thick). Refinement adapts the shape to the per.sw‘ms containing their centergpérallax-violatior). This can cre-
(brighter). The other support is mismatched to a region rgible
in this close-up. a_te a parall_ax effect strong enon_Jgh to meveo the qther
side of the line. Nevertheless, this phenomenon typicélly a
fects only a small minority of triples. Since the camera can
In contrast to the early expansion, many more sup- Only translate in one direction between two views, the re-

ports compete for the same candidate, and no refinemensulting parallax can only corrupt few triples, because ¢hos
is appliedbeforechoosing the winner. However, the pres- ©0n planes oriented differently will not be affected.

ence of more correct supports, now tending to be grouped, The region matches violate or respect equation (4) inde-
and fewer mismatches, typically spread out, provides goodPendently of the order in which they appear in the triple.
chances thaa correct support will win a competition. In  The three points should be cyclically ordered in the same
this process each support has the chance to propagate margrientation (C|0CkWiSG or anti-clockwise) in the two image
more candidates, spread over a larger area, because it ofn order to satisfy (4).

fers help to all candidates within a wide circular radius. ~ Topological configurations of points and lines were also
This allows the system to growraassof correct matches. ~ used by Tell and Carlsson [31] in the wide-baseline stereo
Moreover, the process can jump over small occlusions orcontext, as a mean for guiding the matching process.
degraded areas, and costs only one refinement per candi-

date. For the case-study, 185 new matches, 61 correct, arg .2 Topological filter

produced, thus lifting the correct-ratio &f up to 74/243
(31%, figure 9, second row).

A triple including a mismatched region has higher chances
to violate the sidedness constraint. When this happens, it
indicates that probably at least one of the matches is incor-
7 Main contraction rect, but it does not tell which one(s). While one triple is
not enough to decide, this information can be recovered by
At this point the chances of having a sufficient number of consio!ering al! triples simultaneo_usly. .B.y integ_ratin@ th
weak information each triple provides, it is possible to ro-

correct matches for applying a global filter are much better. bustly di . tches. The kev idea is that i
We propose here a global filter based on a topological con-. ustly discover mismatches. The key idea IS thal we expec

straint for triples of region matches. In contrast to thealoc incorrectly located regions to be involved in a higher share

filter of section 5, this filter is capable of finding also iso- of \_/I_lﬁlatlons.t int is checked f I dered triol
lated mismatches. The next subsection introduces the prop-(Ri Rej %Jkr;slg?l%j %kcee;. ('?'he gLa?e ol;T/?orla(tairc()ans f(r)lrpaes
erty on which the filter is based, while the following two regfon matchR is er’rmpo(Ri) _
subsections explain the filter itself and discuss its gealit

- > |side(R:,, R2,, RE,) — side(R}, R}, RY)|

RI,RkET\R,j>k

7.1 The sidedness constraint (5)
with v = (n — 1)(n — 2)/2,n = |T|. erriopo(R?) €
[0, 1] because it is normalized w.r.t. the maximum number
of violationsv any region can be involved in.

The topological error share (5) is combined with an ap-
pearance term, giving the total error

side(R., R?, R?) = sign((c2 x c3)cl) 3 erTyor(R) = erTyopo(R') + (t2 — sim(RY,, RY))

A%

Consider a triple( R, R?,, R3)) of regions in the model
image and their matching regiof&;, R7, R}) in the test
image. Letcd, be the center of regioR?, (v € {m,t}). The

function



to low correct-ratios, and remedies the potential drawback
(parallax-violations) of a purely topological filter.

In order to achieve good computational performance, we
store the terms of the sum in function (5) during the first
iteration. In the following iterations, the sum is quickBr
computed by retrieving and adding up the necessary terms.
This makes the computational cost almost independent of
the number of iterations. The algorithm can be implemented
to run in O(n?log(n)), based on the idea of constructing,
for each point, a list with a cyclic ordering of all other ptsin

Figure 7:Sidedness constraint. should be on the same side of (a complete explanation is given in [5, pp. 208-211]).
the directed line frone? to ¢® in both images.

7.3 Properties and advantages
The filtering algorithm starts from the current set of matche

I, and then iteratively removes one match at a time as fol- The proposed filter has various attractive properties, &d o

lows: fers several advantages over detecting outliers to theepip
lar geometry through RANSAC [32], which is traditionally
1. (Re-)computerr.(R?) for all R? € T. used in the matching literature [15, 17, 24, 25, 33]. In the
] ] following, we refer to it as RANSAC-EG. The main two
2. Find  the  worst match RY, with advantages are (more discussion in [5, pp. 75-77]):
w = arg max; erTio(R")

It allows for non-rigid deformationsThe filter allows for
non-rigid deformations, like the bending of paper of cloth,
because the structure of the spatial arrangements, cdpture
by the sidedness constraints, is stable under these transfo
If erryor(R™) < 0, or if all matches have been re- mations. As figure 8 shows, sidedness constraints are still

3. If erryot (RY) > 0, removeR™ from I'. R™ will not
be used for the computation efr.p. in the next iter-
ation. lterate to 1.

moved, then stop. respected even in the presence of substantial deformations
) ] . . Other filters, which measure a geometrical distance error
At each iteration the most probable mismatBlt is re-  from an estimated model (e.g. homography, fundamental

moved. During the first iterations several mismatches arematrix) would fail in this situation. In the best case, sever
still present. Therefore, even correct matches might have acqrrect matches would be lost. Worse yet, in many cases the
moderately large error, as they take part in triples includ- geformations would disturb the estimation of the model pa-
ing mismatches. However, mismatches are likely to have rameters, resulting in a largely random behavior. The pro-
an even larger error, because they are involved in the veryposed filter does not try to capture the transformations of
same triples, plus other violating ones. Hence, the worsty|| matches in a single, overall model, but it relies instead
mismatch/z*, the region located it; farthest from where o simpler, weak properties, involving only three matches
it should be, is expected to have the largest error. After re-gach. The discriminative power is then obtained by integrat

moving R* all errors decrease, including the errors of cor- jng gver all measurements, revealing their strong, callect
rect matches, because they are involved in less triples conipformation.

taining a mismatch. After several iterations, ideally only
correct matches are left. Since these have only a low error |t is insensitive to inaccurate locationg.he regions’ cen-
due to occasional parallax-violations, the algorithm stop  ters need not be exactly localized, becawsg,,, varies
The second term afrry, decreases with increasing ap- slowly and smoothly for a region departing from its ideal lo-
pearance similarity, and it vanishes whém(R: , R}) = cation. Hence, the algorithm is not affected by perturlvegio
t2, the matches acceptance threshold. The removal crite-of the region’s locations. This is precious in the preserice o
rion erryoy > 0 expresses the idea that topological viola- large scale changes, not completely planar regions, or with
tions are accepted up to the degree to which they are comall kinds of image degradation (motion blur, etc.), where lo
pensated by high similarity. This helps finding mismatches calization errors become more important. In RANSAC-EG
which can hardly be judged by only one cue. A typical instead, the point must lie within a tight band around the
mismatch with similarity just above, will be removed un-  epipolar line. Worse yet, inaccurate localization of some
less it is perfectly topologically located. Converselyr-co regions might compromise the quality of the fundamental
rect matches witherro,, > 0 due to parallax-violations  matrix, and therefore even cause rejection of many accurate
are in little danger, because they typically have good sim- regions [36]. In [5, pp. 84-85] we report experiments sup-
ilarity. Including appearance makes the filter more robust porting this point, where the topological filter could with-
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Figure 10: Left: the number of correct matches for the case-
study increases at every iteration (compare the pointg &feh
contraction phase). Right: the steady growth in the peagat
of correct matches best illustrates the increasing confiden the
presence of the object (from 1.4% after soft-matching, t@%il
after the last iteration !).

Figure 8: Sidedness constraints hold also for deformed objects.
The small arrows indicate 'to the right' of the directed Ime
A—- B,B—- (C/C— DD — A

stand large random shifts on the regions’ locations (about
25 pixels, in a 720x576 image). correct matches: the amount of noise (percentage of mis-
matches) could still be high and limit the filter's perfor-
mance. Inthe nextiteration, this cleaner configuratiords f
into the expansion phase again which, less distractedrgene
After the main expansion, the correct-ratio of the caseystu ~ 21€S more correct matches and fewer mismatches. The new
was of 74/243. Applying the filter presented in this section correct matches in turn h,e!p the next contraction stage in
brings it to 54/74, which is a major improvement (figure 9 taking better removal decisions, and so on. As a result, the

second row). 20 correct matches are lost, but many morenumber, percentage and spatial extent of correct matches

mismatches are removed (149). The further processing will increa_se at every iteration, rein_forcing the confidenceitbo
recover the correct matches lost and generate even more. (1€ object's presence and location (figure 10). The two goals
of separating correct matches and gathering more informa-

tion about the object are achievatithe same time

Correct matches erroneously killed by the contraction
step in an iteration get another chance during the next ex-
pansion phase. With even fewer mismatches present, they
are probably regenerated, and this time have higher chances
to survive the contraction (higher correct-ratio, moreipos

1. Do a main expansion phase. All current matchese tive evidence preseqt). .
used as supports. This produces a set of propagated re- Thanks to the refinement, each expansion phase adapts

gion matche&’, which are added to the configuration: the shape of the newly created regions to the local surface
r— (TyUT). orientation. Thus the whole exploration process follows

curved surfaces and deformations.

7.4 Main contraction on the case-study

8 Exploring the test image

The processing continues by iteratively alternating main e
pansion and main contraction phases.

2. Do a main contraction phase dh This removes The exploration procedure tends to 'implode’ when the

matches fronT". object is not in the test image, typically returning only a
few matches. Conversely, when the object is present, the

3. If at least one newly propagated region survives the approach fills the visible portion of the object with many

contraction, i.e. if Y (T'| > 0, then iterate to point 1,  high confidence matches. This yields high discriminative

after updating the candidate set to contain- (Q\I'),
all original candidate regionQ which are not yet in

power and the qualitative shift from onfletectingthe ob-
ject to knowing its extent in the image and which parts are

the configuration. Stop if no newly propagated regions occluded. Recognition and segmentation are two aspects of

survived, or if all region$? have been propagated (i.e.
if @ cT).

thesameprocess.
In the case-study, the second main expansion propagates

141 matches, 117 correct, which is better than the previous

In the first iteration, the expansion phase generates som&1/185. The second main contraction starts from 171/215
correct matches, along with some mismatches. Because and returns 150/174, killing a lower percentage of correct
correct match tends to propagate more than a mismatch, thenatches than in the first iteration. After the 11th iteration
correct ratio increases. The first main contraction phase220 matches cover the whole visible part of the object (202
removes mostly mismatches, but might also lose severalare correct). Figure 9 depicts the evolution of the set of



early contraction 13/58

early expansion 20/330

soft matching 3/217

second main expansion 171/

first main contraction 54/74

first main expansion 74/243

contours of the final set of matches

second main contraction 150/174

Figure 9:Evolution of T for the case-

bottom ravismatches;

study. Top-rows: correct matches;

10



matched". The correct matches gradually cover more and
more of the object, while mismatches decrease in number. R, |
The system reversed the situation, by going from only very Q — ™ QR
few correct matches in a large majority of mismatches, to Q I N :
hundreds of correct matches with only a few mismatches. O

Q
d

Notice the accuracy of the final segmentation, and in partic-
ular how the small occluding rubber has been correctly left
out (figure 9 bottom-right).

Figure 11:Affine dissimilarityd is one term in function (6).

9 Overview of part Il: integrating

multiple model views 10 Groups of Aggregated Matches
(GAMSs)

The image-exploration technique presented in the first part
of the paper matches each single model view to the test im-This section describes an incremental grouping algorithm t
age independently. In this second part, we capture the relaPartition a set of two-view matches into GAMs.
tionships among multiple model views, and integrate their
contributions at recognition time. 10.1 Affine dissimilarity

In the next section, we introduce an algorithm for par- ] ] ] o
titioning a set of region matches between two images into | "€ grouping process is driven by the similarity between
groups lying on smooth surfaces (termgmups of aggre- the affine transformatlon.s that map the regions from one
gated matchgsor GAMs). GAMs are at the heart of the ViEW to the other. Consider t_hree points on each region:
approach, and enjoy two fundamental properties. First, thelN€ Centemo and two more pointg;, p, on the boundary.
matches in a GAM are most often all correct, or all incor- 1 N€Se€ points have previously been putin correspondence by
rect. Second, it is very unlikely for mismatches to form the matching algorithm. The following function measures
large GAMs (i.e. composed of many matches). Hence, thel0 yvhlch degree the affine transformatlon of a region match
size of a GAM informs about the probability of it being cor- £ 1S @lso valid for another matap (figure 11):
rect. Because of these properties, it is convenient to reaso
in terms of GAMSs, rather than individual matches. Our mul- 1 <

6

tiple view integration scheme relates GAMs arising from D(R,Q) = = [ > [AT.Q1 — @3] + Y [[451Q5 — Q'il)

different model views, and considefemas atomic units, i=0..2 i=0..2 5
without descending to the matches level. (6)

Sections 11 anq 12 present Fhe multiple-view mtegrgtlon where A%, is the affine transformation mapping from
approach. In the initial modeling stage, the model views '

are matched to each other, in order to build a large number” €% ¢ to view b, and I, is pointp; of region t in view

of region-tracks densely connecting them (section 11). At o B.y averaging over the two regions, we obtain ditne
e . . dissimilarity

recognition time, we match each model view to the test im-

age and partition the resulting sets of matches into GAMs

(section 12). By following the model tracks, a GAM orig-

inating from a certain model view can be transfered to an-

other model view. Hence, we can measure the geometricbetween (the affine transformations éfand@. This mea-

consistencies of pairs of GAMs, and integrate these into asure is symmetric in the regiored in the views. This

global score which quantifies the goodness of some subsebrings stability and helps dealing fairly with large scale

(configuration) of all GAMs, even if they originate from  changes. Two region matches have a high affine dissimilar-

different model views. We search for the configuration that ity if either is a mismatch, or if they lie on different surtee

maximizes the score function. The maximal score repre-

sents the sygtem’s confidence in the presence qf the objec_tl_o_z Constructing GAMs

and strongly increases in the presence of compatible GAMs.

Therefore, the detection power is better than when consid-The matches are partitioned by the following algorithm,

ering model views in isolation, and the segmentation im- which starts a GAM from a single match and then grows

proves because several incorrect GAMs are typically left it by iteratively adding matches. The algorithm starts with

out of the best configuration. the sef) of region matches.

DA(R,Q) = 3 (D(R,Q) + D(Q, R) ™)

11



1. A match is removed frofR and put in a new GAM".

2. Search for a region with affine dissimilarity to the

GAM below a certain threshold. The search proceeds

from the closest to the farthest to the GAM, according
to the spatial distance

> per A(RY, QY)
Tl

This is the average Euclidean distandg ¢f a region

@ to the regions composing the GAM, measured in the

first view. The affine dissimilarity between a regi@n
and the GAMT is ) .. wrDa (R, Q). This is the

Figure 12:Felix scene. Top: 9 Matches. Bottom: Close-up on

Welghted mean of the affine dissimilarities to each re- match H; the ‘a’ of ‘Happy’ is mismatched to ‘Birthday’. The

gion in the GAM, with weightavy set inversely pro-

GAM constructor successfully finds the two groups (dish,anag

portional to the square of the distances between the re-zine) and isolates the mismatch in a third, singleton one.

gions.

3. As soon as a suitable region is found, it is added to

In principle, the composition of a GAM might depend on

the GAM and the search stops. The region is removedthe choice of its first region in step 1. However, the near-to-

from Q, and the algorithm iterates to 2. If no such
region is found, the current GAM is closed. The algo-

far growing order and the distance-based weighting make
the algorithm highly order-independent. This is confirmed

rithm goes back to 1, where a new GAM is created and Py experiments on several scenes, where the composition

then grown. The process terminates wkkis empty.

Figure 12 shows an example ruifre{ix). Matches
A,B,C, D, E, F are distributed over the curved magazine
surface, whilez, I, J over the planar plate on the left of the
image. Regiorf, covering the ‘a’ of ‘Happy’ in the left im-
age, is mismatched to the ‘a’ of ‘Birthday’ in the rightimage
(the correct corresponding region is not visible). The algo
rithm starts by creating a GAM containing regidnalone.

In the next iteration, the nearest regidhis added to the
GAM, and thenC, D, E, F' are added one at the time, in
this order. No other region has a sufficiently similar affine
transformation, so the GAMA, B, C, D, E, F'} is closed.

A new GAM formed by region is started, and then re-
gion I is added. The next nearest regifinis a mismatch
and has a quite dissimilar affine transformation, so it dbesn
join the GAM in the second iteration. Insteadjs picked
up, and the GAM is closed &s7, I, J}. Finally, H is put

in a singleton GAM, and the algorithm terminates.

The algorithm groups two regions in the same GAM
if they have a similar affine transformation or if there is

some region with coherent intermediate affine transforma-

of the GAMs was stable (variations of about 1%) in spite of
random permutations of the input regions.

10.3 Fundamental properties
The GAM decomposition has two fundamental properties:

1. It is unlikely for mismatches to form large GAMs
Mismatches havéndependentrandom affine transforma-
tions, uniformly spread in the large 6D affine transforma-
tion space. Thus, the more mismatches you consider, the
less likely they will respect the constructor’s criteridhat
their affine transformations vary gradually from a region to
the next. A set of mismatches has widely varying, incon-
sistent transformations. More precisely, the probabifligt

N mismatches are grouped in the same GAM is expected to
decrease roughly exponentially wifi. On the other hand,
several correct matches lying on the same surface will form
a larger GAM, because of their coherent affine transforma-
tions. Therefore, the number of matches in a GAM relates
to its probability of being correct.

2. A GAM is most often composed of either only cor-

tion spatially located between them. In other words, the rect matches or only mismatcheBhe reasons lie again in
affine transformation can vary gradually from a region to the randomness of mismatches’ transformations. Suppose
the next within a GAM. Hence, a GAM can cover not only a correct GAM is being grown, and at some iteration the
a planar, but also a curved or even a continuously deformedalgorithm has to decide whether to add a nearby mismatch.
surface (like bending of paper or cloth). The fact that the Thisis unlikely to happen as the mismatch has little chances
method doesn’t prescribe a fixed neighborhood area whereo offer a suitable affine transformation. Even in this case,
to grow renders it capable of grouping also spatially sparsethe probability to add a second mismatch is again equally
and discontiguous subsets of correct matches. low. The total probability quickly drops with the number

12
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Figure 13:a) number of incorrect GAMs in function of their size
(x-axis). b) percentage of correct GAMs.

of added mismatches. As a result, correct GAMs are com-
posed of correct matches only, or they contain only very few
mismatches (typically 1 or 2).

As a combined effect of the two properties, mismatches
are scattered over many small GAMs, while correct matches
typically concentrate in a few larger GAMs. This brings t‘@
the major advantage to organizing individual matches into %y "/, ) )
GAMs: if a GAM contains many matches we know it 76“ - @/}‘V
is very probably correct. Small GAMs are most of the &» N (.“,
time mismatches, and sometimes they are minor groups o ‘ ' ‘
correct matches located on a small, or difficult to match, §
surface. Beside informing about correctness, the sizes o
GAMs correlate with relevance: the larger a GAM is, the
more important it is, because it covers a larger surface.

The above properties are the reason of existence of
GAMs and make them valuable as an intermediate group_Flgure 14_:T0p: (B_raffiti scene. A Iarge GAM covers the whole
ing level on which to base powerful higher level algorithms. Wall. effectively bridging the perspective effect (oniptees are
These need no longer consider each individual match, but;g?;';mj 2{'(;22'3 t‘(’)vr?;’?n'\gsmoeﬂct\:eosvgz]g'gggi?;:’rf‘gim (1:'?::0 o
can reason about complete GAMS ins_tead’ because matCheésmetric. transforrelations vary over a wide range, but chang.{dg ’
and mismatches are separated mto dl_fferent GAMs. Henceua”y among spatially neighboring regions.

GAMs are seen as the new atomic units.
GAMs can be used beyond the object recognition con-

text. In another work [7], we propose a GAM-based algo- \yBs cases include three classic examples used in many pa-
rithm for simultaneously estimating the epipolar geometry pers: the Valbonne church [25], the Graffiti wall [17], and
between two images and filtering mismatches, which works ihe pDunster toy house [22]. The region correspondences
in the presence of very high percentages of mismatches.  5re produced by one-to-one matching for the WBS cases,
and by soft-matching for the object recognition cases (sec-

Experimental assessment. In order to assess the valid- tion 3).

ity of the fundamental properties, we have matched 14 im-  In total there are 2253 matches, which have been parti-
age pairs, run the GAM constructor, and measured size andioned into 1428 GAMs. 1378 of them are formed purely
Composition of all resumng GAMSs. The images come from of mismatCheS, while there are 50 GAMs Containing all 415
diverse sources and contain planar, curved, as well as decorrect matches. We call the formieicorrect GAMsand
formed surfaces. Seven pairs are wide-baseline steres casdhe lattercorrect GAMs Since the overall ratio of correct
(WBS), while the others are object recognition cases, with matches is only 18.4%, the statistics are relevant and truly
the first image being a model view and the second a testSummarize the behavior of the GAM constructor.

image. The two kinds of data differ in several aspects. The Figure 13a plots the number of incorrect GAMs as a
recognition pairs present larger occlusion, scale chargk,  function of their size. The exponential decrease is clearly
clutter. The WBS pairs feature a more complex geome- visible. There is only one incorrect GAM of size 6, and
try, with many fragmented surfaces, in contrast to the often nonelarger than 7. This confirms the first fundamental
compact objects in the recognition pairs. Six of the recogni property: it is unlikely for mismatches to form large GAMs.
tion cases come from our dataset (subsection 13), while oneThe second property is confirmed as well: 96.4% of all
is the teddybear used in the independent work of [23]. The non-singleton GAMs are composed of either only correct
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matches or only mismatches (as the property trivially holds
for singleton GAMs, they are not counted). The property
is also almost fulfilled by the remaining GAMs, as they

contain all correct matches, but one (2.4%) or two (1.2%).
No GAM mixed more than two mismatches with a correct

match, therefore meeting the expectations.

The relation between the size of a GAM and its probabil-
ity of being correct is illustrated in figure 13b, which plots
the percentage of correct GAMs of si2g for variousV.
The chances that a GAM is correct quickly grow with its
size, and is 94% foN > 6.

10.4 Example GAMs

Figure 14 shows some examples. The first is the well-
known Graffiti, introduced in [17]. The constructor algo-
rithm grouped in a single GAM 71 matches spread over
the whole wall, despite evident perspective effects. The
matches are produced by the standard approach of [33]
The other example consists of two image£oleq a plush
toy with a complex shape composed by several curved sur
faces. We matched the images with the image-exploratio
technique presented in part |, and fed the GAM constructor view 4
with the resulting region correspondences. There are many
more correspondences than one would obtain by conven-_ ) .
tional matching, and they densely cover the parts of the ob-T'9ure 15:a) Coverage regions for model view 5. b) One of the
ject visible in both images. When applied to this input, the coverage regions. (.:+d) the <_:orre_spor_1d|ng regions CO”M’W
GAM decomposition is most interesting, because the Con_the image-exploration algorlth_m in views 4 an_d 6. Theseatire

. ; "~ matchess — 4 and5 — 6 induce a three-view track across
structor has enough prime matter to build GAM? COVeIING yiews4, 5,6. Hence, the transitive match — 6 is implied.
larger areas, even if curved or deformed. Despite the veryggtiom: 242 3-view tracks through viewss, 6.
different viewpoints, the exploration algorithm produced
about 120 correct matches, densely covering the parts visi-
ble in both views. The two largest GAMs correspond well Each such track is composed by the image regions of a sin-
to the principal contiguous surfaces, which are the head andgle physical surface patch along the model views in which
the back-arm complex. Some of the matches among the latdt is visible. The tracks should densely connect the model
ter GAM are shown in the close-ups. The regions are all cir- vViews, because they will be used during recognition in or-
cles of the same size in the left image, because they are parder to establish connections among GAMs matched from
of one layer of the coverage generated in subsection 4.1different model views to the test image (section 12).
The contiguous variation of the regions’ shapes in the right ~ This section explains how to build the model region-
image mirrors the changes in affine transformation due totracks, starting from the bare setif unordered model im-
the varying surface orientation. Although ttengeof the ~ ages. First, dense two-view matches are produced between
transformations is very wide, the GAM grouper succeeded all pairs of model images. All pairwise sets of matches are
in grouping these matches in a large GAM, exploiting the then integrated into a single multi-view model. This praces
gradualchanging of the transformation from a region to the can be regarded as a specialized, dense counterpart of other
next. sparse multi-view matching schemes, such as [25, 6].

In the following sections, we explain the method on 8
model views, taken at about 45 degrees during a complete

11 Modeling from multiple views tour of an example object (namé&wleq see next figures).

Let's now turn to the central question of this part of the Dense two-view correspondencesA dense set of region
paper: how to exploit the relationships between multiple correspondences between every two model views; is
model views for recognition. In the modeling stage, the obtained using a simplified variant of the image-exploratio
relationships are captured by a dense sakgfon-tracks technique (part I). More precisely, it uses a simple one-to-
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one nearest neighbor approach for the initial matching in-
stead of the soft-matching phase, and there are no ’early’
phases (sections 4, 5). The system directly goes to the
'main’ phases after the initial matching (sections 6, 7)eTh
use of this faster, less powerful version is justified beeaus
matching model views is easier than matching to a test im-
age: there is no background clutter, and the object appear
at approximately the same scale.

Let’s recall that the image-exploration technique con-
structs correspondences for many overlapping circular re-
gions, arranged on a grid completely covering the first
model vieww; (coverage regionssee subsection 4.1). The
procedure yields a large set of reliable correspondences
densely covering the parts of the object visible in both
views. Please note that the image-exploration matchetis no
symmetric in the views, as it tries to construct correspon-
dences in the second view, for the coverage regions of the
first view (we say that it matches to v;, notedv; — v;).

model view 3

test image

model view 4

Figure 16:A correct GAM (head), matched from view 3, and an
Dense multi-view correspondences Once two-view re- incorrect one (paw) from view 4. The paw GAM is transferredfr
gion correspondences have been produced for all orderednodel view 4 to model view 3 (arrow) via the model’s connestio
pairs of model viewsgv;,v;),7 # j, they can be organized
into multi-view region tracks. When matching a viewto
any other model view, we always use the same set of cov-chestin the testimage. Since the model views are intercon-
erage regions. Therefore, each coverage region, togethefected by the model tracks, we know the correspondences

with the regions it matches in the other views, induces a re-Of the regions on the paw between views 3 and 4. There-
gion track (figure 15). Note that if a region is matched from fore we consider the second GAM to match the chest in the

view v; to view v;, and also from view; to view v, then ~ test image to the paw in model view 3. Now both GAMs
it is implicitly matched between, andv; as well, because ~ Match model view 3 to the testimage, and their (geometric)
it will be part of the same track. Thesensitive matches  inconsistency can be measured and discovered.
actively contribute to the inter-view connectedness, ag th Just as it finds conflicting GAMSs, the system can notice
often link parts of the object that are harder to match di- compatible ones (figure 17). This is a good reason for con-
rectly. The final set of region tracks constitutes our object sidering them as more reliable and therefore to reinforee th
model. Figure 15 shows all 3-view tracks passing through system’s belief in the presence of the object. This leads to
views4, 5, 6, after building the model from all 8 views. the main advantage in evaluating GAM compatibilities: the
reliability of the recognition decision is enhanced, bessau
higher scores can be assigned in positive cases (i.e. when
12 Recognition from multiple views the object is in the test image). As a secondary advantage,
incorrect GAMs can be detected and removed, thus improv-
Given a test image, the system should determine if it con-ing the segmentation.
tains the modeled object. The first step is to match each In this section, we explain how to realize these ideas.
model view of the object to the test image separately. For For every pair of GAMs, we compute a compatibility score,
this purpose, the image-exploration technique is usedhagai quantifying the consistency of their spatial arrangemkmnt.
this time in its full version. Each resulting set of re- simple cases, the two GAMs are matched from the same
gion matches is then partitioned into GAMs. Each correct model view and the score can be directly computed. In the
GAM usually corresponds to (part of) an object facet (fig- more interesting cases where each GAM is from a different
ures 16, 17; only contours are shown). model view, we firstransferone of the GAMs to the model
However, at this stage, there is no guarantee that allview of the other, by using the connections embedded in
GAMs are correct. As a result, there usually are some in-the model tracks. Next, the pairwise scores are integrated
consistencies between GAMs. For instance, a GAM cor- in a singleconfiguration scoreThis varies as a function of
rectly matches the head of Coleo in figure 16 from model the configuration the subset of all GAMs which are con-
view 3 to the test image. Furthermore, there is anothersidered correct. The score favors configurations contginin
GAM erroneously matching the paw in model view 4 to the large, compatible GAMs. This is justified because larger
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model view 1

test image

t/ - ) mf}

= (R ~
b) overlapping model regions

c) transfering one region to view 1

test image

Figure 18: The GAM transfer mechanism. a) The GAM to be

transfered, which is originally matched from view 3 to thet ien-
model view 8 age. b) The sef\ of overlapping model regions. c) One of the
GAM regions (white) is transferred from view 3 to view 1, Via t
affine transformation of the nearest region/of(black). We now
know the correspondence between view 1 and the test image.

Figure 17:Two compatible (and correct) GAMs. The nose GAM
(black) is initially matched from model view 8, and is traerséd

to model view 1. Note how the other GAM (white) is very large fg||ows:
and covers the head, arms and chest. A GAM can extend over
multiple facets when the combination of viewpoints andasarf 1. Determine the set of model regions covering the
orientations make the affine transformations of the regiarcimes 5

vary smoothly even across facet edges. Inthese casesstlitmg same part of; as the GAM®. Remove fromA all

GAM s are larger and therefore more reliable and relevant. regions which are not part of a model track passing
throughv;. The model can now predict the location

and shape of the GAM in;.
GAMs are more likely to be correct. A Genetic Algorithm
is used to maximize the configuration score. The maximum 2. Compute the affine transformations mapping each re-
yields the final recognition score and reveals which GAMs gion of A from v; to v; (figure 18).
are deemed incorrect. The recognition score increases in th i ] ) i
presence of compatible GAMs, thereby improving recogni- 3+ Project each GAM region to; via the affine transfor-

tion performance. mation of the neqrest regioln af. Thereby, we have
The recognition score, and the decisions to remove established a reglon—tq-reglon correspond_ence for the

GAMs, are based onglobal analysis of the situation. This GAM between the testimage and model viey

considers simultaneously relationships among all pairs of i o )

GAMS, coming from all model views. It is computation-  When transferring a GAM, it is like making a model-

ally feasible because there are much less GAMs (a few tensP@sed prediction. The pairwise compatibility score (next
than region matches (hundreds to thousands). This is arpuPSection) evaluates to which degree the two GAMs are
advantage of reasoning on the higher perceptual groupingonsistent with this pr(_adlctlon. Th_ls |de_a is essentiathia
level offered by GAMs. The system no longer needs to W& tht_a system exploits the relationships among t_he model
consider each single region individually, but it can relyeon ~ VIEWS, in order to conclude more than what is possible from
meaningful organization instead. The following subsewtio the mere collection of all GAMs. During modeling, the sys-

describe the elements of the above scheme in more detail. €M learned the structure of the object in the form of region
tracks, and it brings this insight to bear at recognitiorgtim

by imposing order on the GAMs.

12.1 GAM transfer Note that a GAM cannot be transferred if the model re-
Consider a GAM matched from a model viewto the test ~ 9ions it covers in view; are not visible in viewy; (A is
image, and another GAM matched from a different model €MPt). In these cases, the compatibility score is not com-
view v;. Before computing the compatibility score for this Puted, and a neutral score is assigned instead.

GAM pair, they must be putin a common model view. Only 5This is implemented by selecting the model regions whicbnggly

then the geometrical COhere_nce of their relative arran@éme  gyeriap (more than 70%) with the image area covered by thenufithe
can be evaluated. A GAM is transferred framto v; as GAM’s regions.
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12.2 Pairwise compatibility score is used as recognition criterion, to decide whether the ob-
ject is in the test image. As argued before, larger GAMs

We evaluate here the geometric consistency of a pair Ofare trusted more (first summation term). The second term

GAMs. Both GAMs are matched between the test image

and a model view;. If at least one GAM is incorrect, we
wish this measure to be low.
The compatibility score is based on thigledness con-

straint for triples of region matches, introduced in subsec-

tion 7.1. We check the constraint for all triples formed by a
region from a GAM and two regions from the other GAM.

The percentage of triples respecting the constraint is our

choice for the compatibility score of the GAM pair.
The key idea is that if a region is picked from an incor-
rect GAM, we expect most triples in which it takes part to

violate the constraint. Note that no triple is composed of

regions from a single GAM. This is important when exactly

one of the GAMs is correct. In these cases, most triples
based only on the correct GAM will respect the constraint,

and would therefore falsely raise the score.

The proposed score tolerates a substantial amount o
non-rigid deformation. This preserves the system’s capa-

bility of recognizing deformable objects. Moreover, it is

insensitive to inaccurately localized region matches {sub
section 7.3). The score can penalize conflicting GAMs, but

also highlight compatible pairs of GAMs. Although based

on comparing region matches, it captures the compatibility

of the GAMs as a whole.

12.3 Configuration score

The compatibility scores are computed for all pairs of
GAMs, and combined here in a singlenfiguration score

The compatibility scores range ii®,1]. Based on a
thresholdt, we linearly transform the intervd,t| to
[—1,0] and the intervalt, 1] to [0, 1]. The values then range
in [-1,1]. In all experiments, the threshotd= 0.2 splits
the original range into positive and negative parts. Rasiti
scores now indicate that two GAMs are likely to belong to-
gether, while negative ones indicate incompatibility.

Let aconfigurationC be a subset of the available GAMs.

makes the contribution of each GAM heavily dependent on
its compatibility with the others, especially the largeesn
A GAM whose negative compatibilities loweérwill be left
out. Smaller GAMs can also be part of the maximum con-
figuration, depending on how compatible they are with the
others. An important effect of the second summation term
is that the total score can brauch higherthan the mere
sum of the sizes of all correct GAMs. This reflects the key
idea that compatible configurations are worth more because
they more reliably indicate the presence of the object. This
increases the separation between scores in positive and neg
ative cases, thus improving discriminative power.

The GAMs not selected by the best configuration are
deemed incorrect and discarded. This decision is based on a
global analysis. Typically, several incorrect GAMs are de-

tiected thanks to their incompatibility with GAMs matched

o other model views. Such a case couldn’t have been dis-
covered by looking at the GAM’'s model view in isolation.
This is another benefit of our proposal for integrating mul-
tiple model views. Finally, note how we treat a GAM as a
unit: either we keeps all its matches, or none.

12.4 Maximization by Genetic Algorithm

We now need to find the configuration which maximizes
function (8). Unfortunately, we can't try them all out, as
there ar@” possible configurations of GAMs. Moreover,

a function in the form of (8) cannot be maximized by graph-
cuts methods, as shown by [9].

We designed a Genetic Algorithm (GA) to find an ap-
proximation of the solution. GAs offer an elegant and flex-
ible framework for optimizing functions of any form. We
represent a configuration by a binary indicator vedtaf
lengthn. If I(p) = 1, thepth GAM is in the configu-
ration. Thefitness functionF'(I) is defined equivalent to
S(C). The GA follows several steps:

What is the score of a configuration ? It should be high 1. Initialize. Create a random, uniformly distributed pop-

when containing large, mutually compatible GAMs. It

should be lower in the presence of incompatible ones. These

two forces, pairwise corroboration and individual sizes ar
combined into the following configuration score

5(0)

Z Size(P) + Z (Comp(P, Q) - Size(Q))
pPeC QeC\P

(8)

with Size(P) the number of regions in GAMP, and
Comp(P,Q) € [-1,1] the pairwise compatibility scores.
We are interested in the maximum value$fC'), and in
the configuration for which it occurs. The maximum value
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ulation of binary n-vectors. The size of this population
is | = ceil(v/2n)2. Since this enforces/l to be an
integer, it simplifies the later crossover.

2. Fitness. Evaluate the fitness functioR'(I) for each
individual. Stop if the best individual is identical as in
the previous generation.

3. Crossover. Consider the best/l individuals. De-
rive the next generation by crossing over all pairs of
them. Crossing over two individuals means keeping
the identical bits and randomly choosing the different
bits. This amounts to producirig- v/1 new individu-
als, and copying the current bagt.



4. Mutation. Each bit of each individual in the new pop- frontal view models the last 3D objedguard (b3). Mul-
ulation is switched with probability 0.1. This avoids tiple model views are taken equally spaced around the ob-
that the algorithm explores only the part of the search ject. The contributions from all model views of a single

space spanned by the best individuals. object are combined by superimposing the area covered by
_ the final set of matched regions (to find the contour), and by
5. lterate. Iterate to point 2. summing their number (detection criterion). All images are

shot at a modest resolution (720x576) and all experiments
In various experimentsthis GA proved effective by ap-  are conducted with the same set of parameters. In general,
proximating the true exhaustive search solution to less tha in the test cases there is considerable clutter and thetsbjec
1 small GAM difference on average, in comparisons with appear smaller than in the models (all model images have
up ton = 20 GAMs. Itis also very time efficient, as it the same resolution as the testimages and they are shown at
solves cases with. = 20 within some seconds (exhaus- the same size).
tive search needs more than 1 hour), and scales well, taking  1gjerance to non-rigid deformations is shown in c1,

less than one minute for = 60, a problem size for which  \yhereMichelleis simultaneously strongly folded and oc-
the real optimum cannot be computed. One of the reasons, | ,ded. The contours are found with a good accuracy, ex-
for this performance is the nature of the optimization prob- (e qing to the left until the edge of the object. Note the
lem itself. In the vast majority of cases where the object is gytensive clutter. High robustness to viewpoint changes is
in the test image, the GAMs sizes are very non-uniformly gemonstrated in c3, whetois only half visible and cap-
distributed, with some large GAMS, and a greater number yreq in a considerably different pose than any of the model
of smaller ones. Moreover, .the value of function (8) raises yiews, whileMichelle undergoes a very large out-of-plane
more when large GAMs are ifi, and even much more with  1ation of about 80 degreeGuard, occludingMichelle, is
compatible large GAMs. As a result, the search space has 8|5 getected in the image, despite a scale change of fac-
strong non-flat shape, and usually features high peakS for (¢ 3. |n 42, Leo and Ovo exhibit significant viewpoint
containing at least some of the largest GAMs. These char-changes, whileSuchardis simultaneously scaled by fac-
acteristics significantly ease the task of the GA. tor 2.2 and 89% occluded. This very high occlusion level
makes this case challenging even for a human observer. A
scale change of factor 4 affecti®@uchardis illustrated in
13 Results el.In figurg alXmasis divided ir%vo by a large occluder.
Both visible parts are correctly detected by the presented
The next two subsections present results for the image-method. On the right side of the imaggar is found even if
exploration technique (part 1) applied to an object recog- hajf occluded and very smalCar is also detected in spite
nition dataset taken by the authors, and within a video re- of 5 considerable viewpoint change in a3. The combined
trieval application. Subsection 13.3 demonstrates the im-gffacts of strong occlusion, scale change and clutter make
provements brought by integrating the contributions of-mul o gn interesting case. Note how the boundarieXrofis
tiple model views (part II). are accurately found, and in particular the detection of the
part behind the glass. As a final example, 8 objects are de-
tected at the same time in e3 (for clarity, only 3 contours
are shown). Note the correct segmentation of the two de-
The dataset in this subsectidnconsists of 9 model ob- formed magazines and the simultaneous presence of all the
jects and 23 test images. In total, the objects appear 43aforementioned difficulties.
times, as some test images contain several objects. To fa- Figure 20b presents a close-up on one of 93 matches pro-
cilitate the discussion, the images are referred to by theirduced between a model view &imas(left) and test case
coordinates as in figure 19, where the arrangement is chob2 (right). This exemplifies the great appearance variation
sen so that a test image is adjacent to the model object(s}esulting from combined viewpoint, scale and illumination
it contains. There are 3 planar objects, each modeled by achanges, and other sources of image degradation (here a
single view, including &ellogsbox ® and two magazines, glass). In these cases, it is very unlikely for the region to
Michelle (figure c2) andBlonde(analog model view). Two  be detected by the initial region extractor, and hence-radi
objects with curved shapesmas(b1) andOvo(e2), have 6  tional methods fail. This figure also illustrates the accyra
model views Leo(d3),Car (a2),Suchardd1) feature more  of the correspondences generated by the expansion phases.
complex 3D shapes and have 8 model views. Finally, one  ag 4 proof of the method’s capability to follow deforma-
6These experiments are reported in full detail in [5, pp. 193]. tions, we processed the Ca.se in figure .ZOC starting with .Only
7The dataset is available atvw.vision.ee.ethz.ch/ferrari. one matCh (dark) 356 reglons! Coverlng the Wh0|e ObJeCt!
8The kellogs box is used throughout the paper as a case-study. were produced. Each region’s shape fits the local surface

13.1 Recognition on our dataset
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Figure 19:Recogr11it9ion results (see text).



=" Legend ing is carried out by the 'unambiguous nearest-neighbor’

MS02: Mikolajczyk and Schmid 20 approacht® advocated in [1, 14]: a model region is matched
OMO02: Obrdzalek and Matas 2002 to the region of the testimage with the closest descripior if

Bau00: Baumberg 2000 is closer than 0.7 times the distance to the second-closestd
TVG00: Tuytelaars and Van Geol scriptor (the threshold 0.7 has been empirically deterchine

to optimize results). Each of the central curves illussate
the behavior of a different extractor. As can be seen, none
is satisfactory, which demonstrates the higher level of-cha
lenge posed by the dataset and therefore suggests that our
approach can broaden the range of solvable Object Recog-
nition cases. Closer inspection reveals the source of fail-
ure: typically only very few, if any, correct matches are
produced when the object is present, which in turn is due
to the lack of repeatability and the inadequacy of a sim-
ple matcher under such difficult conditions. The impor-
tant improvement brought by the proposed method is best
& | o ' guantified by the difference between the highest curve and
b c the central thick curve, representing the system we started

) - ) ~ from [33] ('TVGOO org’ in the plot).
Figure 20:a) ROC plot. False-positives on the X-axis, detection

rate on the Y-axis. b) close-up on one match of case b2. djregar Figure 21a shows a histogram of the number of final
from thg black region only, the method covers the magazitle Wi matches (recognition score) output by our system. The
365 regions (3 shown). scores assigned when the object is in the test image (p®sitiv
cases) are much higher than when the objectis absent (nega-

percentage a) percentage b) ; . . : N
of cases of cases tive cases). This very good separation brings discrimigati
power and is due to the combination of two effects. First,
4 “ the exploration process tends to implode in negative cases,
309 30%: because the expansion phases can do little and the contrac-
- ! tion phases eat up most of the matches. Conversely, the
Y I . _ue.. method fills the object with matches when it is present, as
number ™t matches (sgore) number of matches (score! expansions can prosper on much fertile surface. As a com-

parison with the traditional methods, the standard match-

Figure 21:Distribution of scores (percentage; bright = positive ing of regions of [20], based on the SIFT descriptor, yields

cases; dark = negative cases). a) for our method. b) for tadier WO hardly separable distributions (figure 21b), and hence
tional matching of the regions of [OM02]. the unsatisfactory performance in the ROC plot. Similar

histograms are produced based on the other feature extrac-
tors[1, 17, 33].
orientation (for clarity, only 3 regions are shown).

The performance of the system was quantified by pro-  As last comparison, we consider the recent system [23],
cessing all pairs of model-object and testimages, and eountwhich constructs a 3D model of each object prior to recog-
ing the resulting number of region matches. The highestnition. We asked the authors to process our dataset. As they
ROC curve in figure 20a depicts the detection rate versusreported, because of the low number of model views, their
false-positive rate, while varying the detection threghol system couldn’t produce meaningful models, and therefore
from O to 200 matches. An object is detected if the num- couldn’t perform recognition. Conversely, we have pro-
ber of produced matches, summed over all its model views,cessed the dataset of [23] with our complete system (in-
exceeds this threshold. The method performs very well, cluding GAMs and multi-view integration). It performed
and can achieve 98% detection with 6% false-positives. Forwell, and achieved 95% detection rate for 6% false-postive
comparison, we processed the dataset also with 4 state-oftsee [23] for more details).
the-art affine region extractors[1, 17, 20, 33], and desckib
the regions with the SIFT [14] descriptdr, which has re-
cently been demonstrated to perform best [18]. The match-

9All region extractors and the SIFT descriptor are impleratiohs of 10we have also tried the standard approach, used in [17, 1830,
the respective authors. We are grateful to Jiri Matas, Kagstlikolajczyk, which simply matches two nearest-neighbors if their distais below a
Andrew Zisserman, Cordelia Schmid and David Lowe. threshold, but it produced slightly worse results.
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Figure 22:Video retrieval results. The parts of the model-images mtindated by the user are blanked out.

13.2 Video retrieval RTBF Belgian television. The data comes from 4 videos,
captured on different days, each of about 20 minutes. The
In this experiment, the goal is to find a specific object or keyframes have low resolution (672x528) and many of them
scene in a test video. The object is only given as delineatedare visibly affected by compression artifacts, motion blur
by the user in one model image. In [29] another region- and interlacing effects. We selected 13 diverse objects, in
based system for video object retrieval is presented. How-cluding locations, advertising products, logos and folbtba
ever, it focuses on different aspects of the problem, namelyshirts, and delineated each in one keyframe. Each object is
the organization of regions coming from several shots, andsearched in the keyframes of the video containing its model-
weighting their individual relevance in the wider contekt o image. On average, a video has 325 keyframes, and an ob-
the video. At the feature level, their work still relies dgle  ject occurs 7.4 times. The number of keyframes not con-
on regions from standard extractors. taining an object (negatives), is therefore much greater th
Because of the different nature of the data, the systemthe number of positives, allowing to collect relevant stati
differs in a few points from the object recognition one. At tics. A total of 4236 (object,keyframe) image pairs have
recognition time the test video is segmented into shots, andbeen processed.
a few representative keyframes are selected in each shot Figure 22 show some example detections. A large piece
by the algorithm of [21]. The object is then searched in of quilt decorated with various flags (a2) is found in a3
each keyframe separately, by a simplified version of the jn spite of non-rigid deformation, occlusion and extensive
image-exploration technique. Specifically, it has a simple clutter. An interesting application is depicted in b1-k2-b
one-to-one nearest neighbor approach for the initial match The shirts of two football teams are picked out as query ob-
ing instead of the soft-matching phase, there are no 'early’jects (b2), and the system is asked to find the keyframes
phases, and there is only one layer of coverage regions. Thigvhere each team is playing. In bl the Fortis shirt is suc-
simpler version runs faster (about twice as fast), though it cessfully found in spite of important motion blur (close-up
not as powerful. It takes about 2 minutes to process a (ob-in a1). Both teams are identified in b3, where the shirts
ject,keyframe) pair on a common workstation (2.4 Ghz PC). gppear much smaller and the Dexia player is turned 45 de-
We present results on challenging, real-world video ma- grees (viewpoint change on the shirt). The keyframe in c1
terial, namely television news broadcast provided by the instead, has not been detected. Due to the intense blur, the
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initial matcher does not return any correct correspondence [j§
Robustness to large scale changes and occlusion is demor¥
strated in a4, where the UN council, modeled in b4, is rec-
ognized while enlarged by a scale factor 2.7, and heavily oc-s
cluded (only 10% visible). Equally intriguing is the image
of figure c4, where the UN council is seen from an opposite ¥
viewpoint. The large painting on the left of b4 is about the -
only thing still visible in the test keyframe, where it appea
on the right side. The system matched the whole area of thq
painting, which suffers from out-of-plane rotation. As stla

c3 (model in c2). The keyframe is taken under a different &
viewpoint and substantially corrupted by motion blur.
The retrieval performance is quantified by thetection

rate andfalse-positive rateaveraged over all objects. An
object is detected if the number of final matches, divided
by the number of model coverage regions, exceeds 10%
(detections of model-keyframes are not counted). The sys
tem performs well, by achieving an average detection rate
of 82.4%, for a false-positive rate of 3.6%. As a compari-
son, we repeated the experiment with [33], the method we
started from. It only managed a 33.3% detection rate, for a
false-positive rate of 4.6%, showing that our approach can
substantially boost the performance of standard affine in-
variant matching procedures.

13.3  Multiple-view integration Figure 23:Coleo cases. a) The example used in part Il. b) De-

Example cases. We present a few examples on Coleo, formed case. The rais_ed arm and the deformed chest are succes
to illustrate the behavior of the multiple-view integratio fully dftg:;d' TheAmrl]n(lalr ba_ckground b.lt?]bs. are d.uf toa fewbln
scheme. Coleo features a complex geometry composed b)zgrrec s- €) Acha €nging case with Viewpoin rematka

g . ifferent from any model view. d) Some of the removed GAMs. €)
several curved surfaces. Moreover, it is covered by ambigu-

e Close-up on some of the matches of case b. The regions are all
ous texture, formed by many small variations on the same g jes in the left image because they are part of the homegesn

basic pattern, which challenge the matching process. Thecoverage. The shapes of the constructed corresponderigés) (r
model is built from only 8 views. automatically adapt to the changing surface orientation.

On the example of figures 16 and 17, the system initially
produces 33 GAMs. Only 9 of the GAMs are correct, but 4
of them are very large (more than 60 matches) and containarea covered by the 10 selected GAMs.
the majority of the correctly matched regions. The multi- A challenging case is shown in figure 23c. The viewpoint
view integration scheme selects 10 GAMs in the config- is from above, and remarkably different from any model
uration with the maximal score. All 9 correct GAMs are Vview. The object appears twice smaller than in the model
included, while all but one of the 24 erroneous GAMs are views, and is partially occluded by a ball (head) and a plush
successfully detected and discarded. The final recognitionwildcat (front). 37 GAMs are initially produced, out of
scoreis 1770, which is three times as much as the total numwhich 5 are correct and quite large (43 matches on average).
ber of matches within the correct GAMs (596). Hence the Most of the 32 wrong ones are composed by few matches.
confidence about the presence of the object is significantlyOur method selects all 5 correct GAMs, and 3 small incor-
boosted, compared to the simpler approach taken in sub+ect ones, thereby effectively removing the large majaity
section 13.1 which just accumulates the number of matchegnismatches (93%). The recognition score is 581, which is
from all model views as score. Moreover, when the object 2.6 times the number of matches in all correct GAMs (216).
is not in the test image, the confidence score is decreasedNote the quality of the segmentation, which includes even
As combined effect, the scores assigned in the two casegarts of the tail and the left paw. Figure 23d shows some of
are more separated, which leads to enhanced discriminativéhe removed GAMs.
power. Figure 23a shows the final segmentation, as the total In the case of figure 23b Coleo is non-rigidly deformed.
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Figure 25:ROC plot. Adding the multiple-view integration layer
brings significant improvement (thick line) on our dataset.

Figure 24: Effects of additional model views. One of the 4 ad-

ditional views (left), and segmentation for the case of &g2Bc, must be noted that the other 41 incorrect ones are filtered
when using 12 model views (right). Notice the improvemegt, e out. Moreover, the 10 retained GAMs contain only a few
the head is more complete, and the left paw is included. matches each (3.8 on average) and their total size makes up

only 11% of the mismatches within all 51 incorrect GAMs.

One arm is raised (left of the image), the paws face each

other and the chest is being compressed. Nevertheless, thEnPact on our dataset In order to test the effects of the
system could identify the object (configuration score 1270) mult!ple_-wew integration scheme on a Iarger scale, we have
and included in the segmentation also the arm and the ches@PPlied it to the whole dataset of subsection 13.1. We have
The paws were missed, because too occluded (right pawyf!rst built models for all 9 objects,_wathe procedyre of sec-
and turned so as to hide the bottom part, mostly visible in ion 11. Then, the outputs of all image-exploration match-

the model views (left paw). A closer look at the chest allows "9 Processes for every pair of object and test images have
to fully appreciate the behavior of the image-exploration

been integrated as explained in section 12. Notice how the
technique (figure 23e). The pressure applied by the ﬁngerscheme sefamlessly accommodate_s for objects having only
causes considerable distortions of the texture pattere. Th 0N model image. In these cases, it naturally reduces to an

system responds by altering the shape of each region in thédvanced two-view filter, which verifies the mutual compat-
test image, so as to mirror the wide variation of the local ibilities of GAMs matched between the model view and the

surface orientation. testimage. 'I_'he parameters are k(_ept_the same throughoutthe
whole experiment. The ROC plot in figure 25 shows impor-
" ) tant improvement over the one obtained without multiple-
Effect of additional model views Although the above e\ integration. The system now attains the excellent per-

reported cases are solved satisfactorily based on 8 modef,. .- & of 100% detection, for 3% false-positives.
views, it is interesting to inspect the effects of including

more model views. Figure 24 shows one of the 4 additional
model views, which are taken from above at 90 degreesin-14 Related work
tervals. Matching also these new model views to the test
image of figure 23c results in a total of 60 GAMSs, includ- Part I: simultaneous object recognition and segmenta-
ing 9 correct. 8 correct GAMs, and 10 incorrect ones, aretion. The presented technique belongs to the category of
selected by the best configuration, giving a score of 2498, appearance-based object recognition. Since it can extend
almost 5 times the total size of correct GAMs (511). Not any approach which matches affine invariant regions be-
only the score is much higher than when using 8 model tween images, it is tightly related to this class of methods.
views (581), but especially the ratio to the number of cor- The novelties and improvements brought by our approach
rect matches is larger (it was 2.6 before). The score growsare enumerated in the introduction section and demon-
faster than linearly with the number of compatible GAMS, strated in the result section 13.
realizing the idea that since compatible GAMs reveal con-  Beyond the realm of local invariant features, there are a
sistent hypotheses, the system’s confidence should quicklyfew works which are related to ours, in that they also com-
grow with them. When more model views are available, bine recognition with segmentation. Leibe and Schiele [11]
their larger overlap leads to a greater number of GAMs and present a method to detect an unknown object instance of a
a higher degree of their mutual corroboration. More model given category and segment it from a test image. The cate-
views means more cooperation and the proposed approachory (e.g. 'cows’) is learnt from example instances (images
can effectively measure it. Besides, the segmentation alsaof particular cows). However, the method does not sup-
marginally improves, and now covers the left paw and more port changes in camera viewpoint or orientation. In [35],
of the head. low-level grouping cues based on edge responses, high-
While including 10 incorrect GAMs might seem a lot, it level cues from a part detector and spatial consistency of
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detected parts, are combined in a graph partitioning frame-without trying to relate them or exploit their interplay
work. The scheme is shown to recognize and segment ae.g. [8, 10, 20, 26, 27]). Only very few such earlier works
human body in a cluttered image. However, the part de- try to capture and exploit the relationships among the model
tectors need a considerable number of training examplesyiews. In [13], similar model views are clustered, and links
and the very 'parts’ to be learned are manually indicated are made between corresponding features in adjacent clus-
(head’, 'left arm’, etc.). Moreover, there is no viewpagint ters. By following the links, a feature from the test im-
orientation or scale invariance. Both methods are suited fo age votes for the view to which it is matched, and for the
categorization, and not specialized in the recognition of a adjacent ones. The system gains robustness, because the
particular object instance. votes are not dispersed among neighboring model views.
While we believe our approach to be essentially new, In comparison to that work, we believe that our approach
some components are clearly related to earlier researeén. Thoffers deeper integration among the model views. Multi-
filter in section 7 is constructed around the sidedness con-le views activelycooperate by reciprocally (in)validating
straint. A similar constraint, testing the cyclic orderiofy GANMs arising from different views, they corroborate, or in-
points, was used for wide-baseline matching in [31]. More- hibit, the hypotheses of correspondence among parts of the
over, the 'propagation attempt’ at the heart of the expansio object surface they represent. Moreover, the system arrive
phases is an evolution of the idea of 'growing matches’ pro- at a global recognition score, based on all GAMs and their
posed by [22, 25, 24]. While they use existing affine trans- mutual compatibility as expressed by the model views. This
formations only toguide the searcHor further matches, score grows in presence of compatible GAMs, thereby ex-
our approach activelgeneratesnew regions, which have plicitly taking into account that hypotheses shared by mul-
not been originally extracted. This is crucial to counter tiple model views more reliably indicate the presence of
the repeatability problems stated in the introduction.- Pre the object. The very organization of region matches into
viously, a different, pixel-by-pixel propagation strayagas GAMs, which become the new unit of reasoning, is a dif-
proposed in [12], but it is applicable only in case of small ference and novelty of our approach.
differences between the images. In [23], a high degree of multiple-view integration is
reached by building a 3D model of the object, prior to
recognition. The method imposes two-view and multiview
geometric constraints on subsets of matches, and obtains
partial reconstructions by factorization. These part&l r
constructions are then registered in a global frame by align
ing points common to overlapping subsets. In contrast, our
method does not build a 3D model. This has the advan-
tage that the selection of model views is less constrained.
Indeed, not all features need to be visible in at least two
or three views, and the method can work also with a single
view, or with disjoint views. Moreover, there is no danger of
all matches in one such part are rigidly mapped bsira degenerate cases such as views showing only a single planar
part. As an additional advantage, our method does not make

gle affine transformation, they are limited to cover semi- rigidity assumptions and is capable of recognizing objects
local planar areas. In contrast, GAMs are more general as

they can cover any smooth surface, be it large, curved Orundergomg non-rigid deformations.
deformed.

Since finding GAMs is not a gogber se but rather 15 Conclusion and outlook
an intermediate representation to enable higher level al-
gorithms, their relation to the research world is better un- In the first part of the paper we have presented an approach
derstood when considering our approach to integrating theto object recognition capable of solving particularly chal
contributions of multiple model views for recognition. If lenging cases. Its power roots in the 'image exploration’
we take a step back from local invariant regions, and look technique. Every single correct match can lead to the gener-
at the wider world of appearance-based Object Recogni-ation of many correct matches covering the smooth surface
tion, we find much research on modeling 3D objects us- on which it lies, even when starting from an overwhelming
ing multiple training viewpoints. For example in the works majority of mismatches. Hence, the method can boost the
on aspect graphs [4], or on appearance eigenspaces [19berformance of any algorithm which provides affine regions
However, when turning our attention to local invariant re- correspondences, because very few correct initial matches
gions, we notice that nearly all works focus on one model suffice for reliable recognition. Moreover, the approximat
image, or use multiple model images just independently, boundaries of the object are found during the recognition

Part 1l: integrating multiple model views The GAM
idea is similar in spirit to the work of Selinger and Nel-
son [28], who advocate the benefits of an intermediate per-
ceptual grouping level between primitives and views. Un-
like in their work, here the primitives being grouped are
region matches, rather than contour fragments. Moreover
GAMs are inherently a two-view concept, whereas con-
tour fragments are defined in individual views. \ery re-
cently, Lazebnik et al. [10] have proposed to cluster nearby
matches into semi-local groups, coined 'affine parts’. 8inc
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process, and non-rigid deformations are explicitly taken [2]
into account, two features lacking in competing approaches
(e.g.[1, 14, 17, 20, 23, 24, 33)).

The second part of the paper introduced the GAM con- [3]
cept, and extended the recognition scheme to exploit the re-
lationships among multiple model views to integrate their
contributions during recognition. This increases the dis- [4]
criminative power due to the higher scores in positive cases
Moreover, the segmentation quality improves due to the [5]
removal of spurious region matches. Multi-view integra-
tion is achieved without rigidity assumptions, and with-
out constructing a 3D model. The heart of the approach, [g]
GAMs, are capable of covering planar, curved or smoothly
deformed surfaces, and posses two fundamental propertiesm
which reveal valuable for the design of higher-level algo-
rithms. GAMs are useful in several contexts of computer 8]
vision. In [5, 7] they are used in a powerful two-view fil-
ter, robust to very high amounts of mismatches. In a sense,
GAMs also form an alternative to the elusive concept of
'object parts’, in that they offer a perceptual unit between
the local features and the global object.

Some individual components of the scheme, like the
topological filter and GAMs, are useful in their own right,
and can be used profitably beyond the scope of this paper. [11]

In spite of the positive points expressed above, our ap-
proach is not without limitations. One of them is the compu-
tational expense: in the current implementation, a 2.4 Ghz[12l
computer takes about 4-5 minutes, on average, to process a
pair of model and test images. Although we plan a num- [13]
ber of speedups, the method is unlikely to reach the speed
of the fastest other systems (the system of Lowe [13, 14][14]
is reported to perform recognition within seconds). As an-
other limitation, our method is best suited for objects vahic  [15]
have some texture, much like the other recognition schemes
based on invariant regions. Uniform objects (e.g. a baljoon
cannot be dealt with and seem out of the reach of this kind of[16]
approaches. They should be addressed by techniques based
on contours [4, 28]. Hence, a useful extension would be to[17]
combine some sort of 'local edge regions’ with the current
textured regions. Another interesting evolution would be [1g)
to make the multiple-view integration scheme more active.
Currently all model views are first matched to the test im- [19]
age, with the integration happening only afterwards. How-
ever, we could start by matching to a single view only and
then employ the model connections to decide if and which
other model view to try out. Finally, using several types [21]
of affine invariant regions simultaneously, rather tharyonl
those of [33], would push the performance further upwards. [

(9]

[10]

[20]
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