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ABSTRACT

We present a method to (semi-)automatically annotate video
material. More precisely, we focus on recognizing specific
objects and scenes in keyframes. Objects are learnt simply by
having the user delineate them in one (or a few) images. The
basic building block to achieve this goal consists of affine
invariant regions. These are local image patches that adapt
their shape based on the image content so as to be invari-
ant to viewpoint changes. Instead of simply matching the
regions and counting the number of matches, we propose to
gather more evidence about the presence of the object by ex-
ploring the image around the initial matches. This boosts
the performance, especially under difficult, real-world imag-
ing conditions. Experimental results on news broadcast data
demonstrate the viability of the approach.

1. INTRODUCTION

We tackle the problem of automatically finding a specific ob-
ject or scene in a video. The object is only given as delineated
by the user in one, or a few, model images. This is useful in
the context of video annotation: instead of having a person
manually marking every occurrence of interesting objects in
the video, the system could do this largely automatically, re-
sorting to human intervention only to delineate each object
once.

Traditionally, in such content-based image retrieval task
the object is represented byglobal features, which col-
lect information across the whole image. Examples of
such features are histograms of color and texture, or edge-
signatures [10].

In the last few years, several techniques for extracting lo-
cal, invariant features have appeared [11, 6, 7, 1, 5]. The fea-
tures are small, planar image regions whose extraction pro-
cess is invariant to affine geometric transformations. Thus,
the regions are detectedindependentlyin each image, while
their shape automatically adapts to the viewpoint so as to
keep on covering the same physical surface (figure 1).

Typically, retrieval schemes characterize the regions by a
vector of invariant descriptors and use them to match model
regions to regions coming from a test image (e.g.: a video
frame) in a nearest-neighbor style. Images with a sufficient
amount of matches are labeled as containing the object.

Unlike with global methods, representing the object as a
collection of local regions brings robustness to background
clutter and partial occlusions. Moreover, viewpoint changes
are allowed and the search focuses on a specific object, rather
than on mere similar appearance (e.g.: color histogram).
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Figure 1: Example case. A pair of corresponding regions
independently extracted from a model-image (left, only user-
delineated parts shown) and a keyframe (right).

Unfortunately, the chance of repeatably extracting a
given region in both the model-image and a test video frame
considerably drops under a combination of challenging con-
ditions, such as large scale and viewpoint changes, strong
occlusion and the low image quality a video usually offers.
At the same time, extensive clutter generates many spurious
features, which disturb the matching process. As a final out-
come, only a few regions are correctly matched, which is
insufficient for reliable object detection in a long video.

In this paper, we tackle the problem by no longer relying
solely on matching viewpoint invariant regions. Instead, we
anchor on an initial set thereof, and thenlook aroundthem
trying to construct more matching regions. As new matches
arise, they are exploited to construct even more, in a process
which gradually explores the video frame, recursively con-
structing more and more matches, increasingly further from
the initial ones. Thisexpansionprocess is alternated with a
contractionone, where incorrect matches are removed. As
the number and extent of matching regions grows, so does
the system’s confidence in the presence of the object.

The basic characteristic of the approach is that each sin-
gle correct initial match can expand to cover a contiguous
surface of the object with many correct matches, even when
starting from a majority of mismatches. This leads to several
advantages. First, robustness to scale, viewpoint, occlusion
and clutter are greatly enhanced, because most cases where
the original approach produced only a few correct matches
can now be solved. Second, the approximate boundaries of
the object are directly indicated by the envelope of the final
set of matches. Recognition and segmentation are achieved
at the same time. Third, non-rigid deformations are taken
into account. The method can extend any viewpoint invari-
ant region extractor.

In [9] another region-based system for video object re-
trieval is presented. However, it focuses on different aspects
of the problem, namely the organization of regions coming
from several shots, and weighting their individual relevance
in the wider context of the video. At the feature level, their



work still relies solely on regions from standard extractors.
This paper is organized as follows. The next section gives

a scheme of the system. Section 3 explains the image explo-
ration algorithm, while experimental results on news broad-
cast material are reported in section 4.

2. SCHEME OF THE SYSTEM

The system’s input consists of a model-image containing the
object to be annotated delineated by the user, and a test video
stream where to search for the object. The model-image does
not necessarily have to come from the test video.

The processing is divided in learning and recognition.
During learning, regions are extracted from the object part
of the model-image. We use [11], but any affine invariant
region extractor is suitable.
The recognition phase goes through the following stages:
1. Video segmentation.The input video is segmented into

shots, and a few representative keyframes are selected
in each shot. The video is sampled so that subsequent
keyframes are significantly different, but still adequately
cover the whole content of the shot. This operation is
performed by the algorithm of [8]. Further stages only
inspect the keyframes.

2. Region extraction. Regions are extracted in all
keyframes, with the algorithm of [11].

3. Keyframes exploration.The regions of a keyframe are
first matched to the model regions. The surrounding area
is then gradually explored. The process tries to cover the
whole object with new matching regions, while simulta-
neously removing mismatches.
This stage is the subject of the paper, and is described in
more detail in the next section.

4. Detection.The object is detected in every keyframe with
more than a pre-defined amount of matches (after the ex-
ploration stage).

3. EXPLORING THE KEYFRAMES

The case of figure 1 poses several challenges. The object
is physically bent and it appears smaller and occluded in a
heavily cluttered keyframe. The images, which come from a
compressed video of a news broadcast, are of low quality.

Because of these difficult conditions, the approach
of [11] produces only 10 matches, out of which 5 are cor-
rect. Although this figure somehow indicates a detection, it
is not sufficiently high to guarantee good performance in a
long video. Indeed, also many keyframes whichdo notcon-
tain the object might obtain 10, or more, matches. Besides,
for reliability it would be preferable to identify a larger per-
centage of correct matches than 50%.

In this section, we present a method1 which bootstraps
from the initial matches produced by [11] and, in case the
object is present in the keyframe, generatesmanymore. This
results in much higher detection scores when the object is
present than when it is not.

3.1 Coverage of the model image

The model image is densely covered with a grid of overlap-
ping circular regions. At this point, none of them is matched

1This is a simplified version of our method [3] adapted for the applica-
tion. It was first used for object recognition in still images.
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Figure 2: A candidate region is propagated via the affine
transformation of a support match. Refinement adapts the
shape to the different surface orientation of the candidate.

to the keyframe. The goal of the following steps is to gener-
ate in the keyframe as many regions corresponding to these
as possible.

3.2 Expansion

The geometric transformation of the current matches are used
to construct new keyframe regions which match nearby cov-
erage regions. The procedure is illustrated in figure 2. LetA

be the geometric (affine) transformation mapping an existing
region matchR from the model image to the keyframe.A is
applied to an unmatched coverage region lying nearR in the
model image. If both thesupportregionRand thecandidate
coverage region lie on the same continuous physical surface,
then they will be mapped to the keyframe by similar affine
transformations. Hence, this operation constructs a region in
the keyframe roughly corresponding to the candidate.

The geometric registration is refined by the algorithm of
[2], which modifies the shape of the newly created region so
as to maximize the similarity with the candidate in the model
image. A combination of greylevel normalized-cross correla-
tion and pixel-wise distance in normalized RGB color space
is used as similarity measure. This refinement step adapts
the region to the local surface orientation and to perspective
effects. The refined region is accepted as match for the can-
didate if its final similarity exceeds a threshold. We say that
the candidate ispropagatedto the keyframe. When several
supports are present around a candidate, only the best propa-
gation is kept.

The propagation scheme is applied to all currently un-
matched coverage regions. As a total effect, many new
matches are generated, in an area around the previous
matches. However, not all of them are guaranteed correct.
Somemispropagationsare possible, for example when a
propagation based on a mismatched support is accepted.

3.3 Contraction

In order remove incorrect matches, the current matches are
filtered based on the analysis of their spatial arrangements.
The filter is based on the followingsidedness constraintfor
a triple of region matches. The center of a first region should
be on the same side of the directed line going from the center
of a second region to the center of a third region, in both
the model-image and the keyframe. This constraint holds for
the large majority of correctly matched triples (see [2] for
details).

A triple including any mismatched region has higher



Figure 3:The contour of the final set of 130 matches. Note
the completeness of coverage and the accuracy in general.

chances to violate the constraint. When this happens, we
can only conclude that probably at least one of the matches
is incorrect, but we do not yet know which one. However, by
integrating the weak information each triple provides, it is
possible to robustly discover mismatches. We check the con-
straint for all unordered triples and we expect wrong matches
to be involved in a higher share of violations.

The filter algorithm starts from the current set of matches,
and then iteratively removes matches as follows:
1. (Re-)check the constraint for all triples of current

matches. For each match, store the percentage of con-
straints it violates.

2. Find the worst matchW, which violates most constraints.
3. If the percentage of violations ofW is above a threshold,

removeW from the set of matches, and iterate to point 1,
else stop.

The idea of the algorithm is that at each iteration the most
probable mismatchW is removed and the number of vio-
lations for correct matches decreases, because they are in-
volved in less triples containing any mismatch. After several
iterations, ideally only correct matches are left. Since these
are involved in only a few violations, the algorithm stops.

The proposed filter has two main advantages over detect-
ing outliers to the epipolar geometry through RANSAC [4],
which is traditionally used in the matching literature. It al-
lows for non-rigid deformations and it is much less sensitive
to inaccurate localizations of the regions.

3.4 Alternate expansion and contraction

The processing continues by iteratively alternating expansion
and contraction phases:
1. Do an expansion phase. All current matches are used as

supports, and all original coverage regions that are not yet
matched are candidates. The propagated region matches
are added to the current matches.

2. Do a contraction phase on the current set of matches.
3. If at least one newly propagated region survives the con-

traction, then iterate to point 1. Otherwise stop.
In the first iteration, the expansion phase generates many cor-
rect matches, along with some mismatches. The first con-
traction phase removes mostly mismatches, but might also
lose some correct matches: the percentage of wrong matches
might be still high and confuse the filter. In the next it-
eration, this cleaner configuration is fed into the expansion
phase which, less distracted, generates more correct matches
and less mismatches. The presence of new correct matches
in turn helps the next contraction in taking better removal
decisions, and so on.

As a result, the amount and spatial extent of the correct
matches grow at every iteration, reinforcing the confidence
about the object’s presence and location. The two processes
of expansion and contractioncooperatein order to gather
more evidence about the object and separate correct matches
at the same time.

Thanks to the refinement, each expansion phase adapts
the shape of newly created regions to the local surface orien-
tation. Thus the whole exploration follows curved surfaces
and deformations.

The approach fills the visible portion of the object with
many high confidence matches. Besides bringing discrimi-
native power, this results in the simultaneous recognitionand
segmentation of the object.

Applying this scheme to the example of figure 1 yields
130 final matches, 117 of which are correct (figure 3). This
is much better than the 10 matches of [11], the approach we
started from. Moreover, the exploration procedure tends to
’implode’ when the object is not in the keyframe, typically
returning 0, or at most a few, matches. Hence, discriminative
power is greatly increased when searching for many objects
in a long video.

4. RESULTS AND CONCLUSIONS

We report results for news broadcast material from the RTBF
Belgian television channel. The data comes from 4 different
news report videos, captured on different days, each of about
20 minutes. Keyframes were obtained through the algorithm
of [8]. The image quality is quite low: the keyframes have
low resolution (672x528) and many of them are visibly af-
fected by compression artifacts, motion blur and interlacing
effects. We selected 13 objects, including locations, advertis-
ing products, logos and football shirts, and delineated each in
one representative keyframe. Each object is searched in the
keyframes of the video containing its model-image. In aver-
age, an object is searched in 325 keyframes, and occurs 7.4
times. The number of ’negatives’, i.e.: keyframes not con-
taining an object, is therefore much greater than the number
of positives, which allows to collect significant statistics. A
total of 4236 (object,keyframe) image pairs have been pro-
cessed.

Figures 3 and 4 show some examples of successful detec-
tions. A large piece of cloth decorated with various flags is
found in figure 3 in spite of non-rigid deformation, occlusion
and extensive clutter. Notice the completeness of the seg-
mentation (the right part is self-occluded in the model and,
correctly, left undetected in the keyframe, as is the part oc-
cluded by the RTBF logo).

An interesting application is depicted in figures 4a-b-c.
The shirts of two football teams are picked out as query
objects (figure 4a) The system is then asked to find the
keyframes where the first team (Dexia) is playing, and where
the other team (Fortis) is playing. In figure 4c the Fortis shirt
is successfully found in spite of moderate rotation and mo-
tion blur. Both teams are identified in figure 4b, even if the
shirts appear much smaller and the Dexia player is turned 45
degrees (viewpoint change on the shirt).

Robustness to large scale changes and occlusion is
demonstrated in figure 4e, where the UN council, modeled
in figure 4d, is recognized while enlarged by a scale factor
2.7, and heavily occluded: only 10% of the model image is
visible. Equally intriguing is the image of figure 4f, where



b e

c f h

a (model image) g (model image)

d (model image)

Figure 4:Results. The parts of the model-images not delineated by theuser are blanked out. The sizes have not been altered:
the model images are shown at the same scale as the test keyframes. Details in the text.

the UN council is seen from an opposite viewpoint. The large
painting on the left in the model image is about the only thing
still visible in the test keyframe, where it appears on the right
side. The system managed to match the whole area of the
painting, which suffers from out-of-plane rotation, and thus
retrieve the UN council.

As a last example, a room with Saddam Hussein is found
in figure 4h (model in 4g). The keyframe is taken under a dif-
ferent viewpoint and corrupted by considerable motion blur.

The retrieval performance is measured by thedetection
rateandfalse positive rate, averaged over all 13 objects. For
an object, the detection rate is the number of correct detec-
tions divided by the total number of times the object occurs in
the video (to keep results fair, detections of model-keyframes
are not counted). The false positive rate refers to the number
of wrong detections over the number of negatives. An ob-
ject is detected if the number of final matches, divided by
the number of model coverage regions (see subsection 3.1),
exceeds 10%. The system performs well, by achieving an
average detection rate of 82.4%, for a false-positive rate of
3.6%. As a comparison, we repeated the whole experiment
with [11], the method we started from. It only managed a
33.3% detection rate, for a false-positive rate of 4.6%, show-
ing that our approach can substantially boost the performance
of standard affine invariant matching schemes.

It takes on average 2.16 minutes to process a (ob-
ject,keyframe) pair on a modest workstation (1.4 Ghz PC).
While this is not particularly fast, and far slower than real-
time, it is still a reasonable computational requirement for
off-line processing. In this scenario, the system is run be-
forehand on many potentially interesting objects, and user-
queries are processed in real-time based on the pre-computed
annotations (like in [9]).

The results confirm the viability of our approach for re-
trieving objects in the challenging, real-world conditions of
news broadcast video data. The method is very effective
against viewpoint and scale changes, occlusion, clutter and is
robust to moderate amounts of image degradation, like mo-
tion blur and compression artifacts. Moreover, deformable

objects are taken into account and the approximate contours
of the object are produced.

Potential improvements include the support of uniformly
colored, or very sparsely textured, objects, the reduction
of computational requirements, and the exploitation of the
video’s temporal continuity (e.g.: for learning a multi-pose
model from various sides of an object visible in the shot sur-
rounding the model keyframe). .
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