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Abstract. We propose a method for object detection in cluttered reagis,
given a single hand-drawn example as model. The image edggsaditioned
into contour segments and organized in an image repregentahich encodes
their interconnections: the Contour Segment Network. Tdjeat detection prob-
lem is formulated as finding paths through the network rediegithe model
outlines, and a computationally efficient detection teghaiis presented. An ex-
tensive experimental evaluation on detecting five divelgead classes over hun-
dreds of images demonstrates that our method works in vatiectd images,
allows for scale changes and considerable intra-claseslafation, is robust to
interrupted contours, and is computationally efficient.

1 Introduction

We aim at detecting and localizing objects in real, clutiéneages, given a single hand-
drawn example as model of their shape. This example depietsdantour outlines of
an instance of the object class to be detected (e.g. bditjase 1d; or mugs, composed
by two outlines as in figure 5a).

The task presents several challenges. The image edgestargiably extracted
from complex images of natural scenes. The contour of thietbsbject is typically
fragmented over several pieces, and sometimes parts assquidloreover, locally,
edges lack specificity, and can be recognized only when ptitdrwider context of
the whole shape [2]. In addition, the object often appeadduttered images. Clutter,
combined with the need for a ‘global view’ of the shape, is phimcipal source of
difficulty. Finally, the object shape in the test image caffediconsiderably from the
one of the example, because of variations among instant¢les\an object classc{ass
variability).

In this paper, we present a new approach to shape matchingdhwakidresses all
these issues, and is especially suited to detect objectshbistantially cluttered im-
ages. We start by linking the image edges at their discoitésyiand partitioning them
into roughly straight contour segments (section 3). Thegengnts are theconnected
along the edges and across their links, to form the imageseptation at the core of
our method: th&€ontour Segment Netwo(kection 4). By recording the segment inter-
connections, the network captures the underlying imagetsire, and enables to cast
object detection as finding paths through the network reiegnthe model outlines.
We propose a computationally efficient matching algoritiontfiis purpose (section 5).
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The resulting, possibly partial, paths are combined intal fifetection hypotheses by a
dedicated integration stage (section 6).

Operating on the Contour Segment Network brings two key matdwges. First, even
when most of the image is covered by clutter segments, orifyited number is con-
nected to a path corresponding to a model outline. As weldetsection 5, this greatly
limits the choices the matcher has to make, thus allowingptoectly locate objects
even in heavily cluttered images. Besides, it also makesdhgutational complexity
linear in the number of test image segments, making our systencplatiy efficient.
Second, since the network connects segments also over sdgatihuities, the system
is robust to interruptions along the object contours, arghtart missing parts.

Our method accommodates considerable class variability figxible measure of
the similarity between configurations of segments, whicduges on their overall spa-
tial arrangement. This measure first guides the matchinggssotowards network paths
similar to the model outlines, and is then used to evaluaaythality of the produced
paths and to integrate them into final detections. As oth@oimant features, our ap-
proach can find multiple object instances in the same imageuges point correspon-
dences, and handles large scale changes.

In section 7 we report results on detecting five diverse dlgj@sses over hundreds
of test images. Many of them are severely cluttered, in tabbject contours form a
small minority of all image edges, and they comprise onlyaation of the image. Our
results compare favorably against a baseline Chamfer Match

2 Previous work

The construction of our Contour Segment Network (sectiong)3is rooted in earlier
perceptual organization works [14, 12]. However, unlikesth, we do not seek to single
out salient edge groups. Instead, we connect all subsegegmtents in a single, global
network which comprises all possible contour paths. Thabés our main contribu-
tion: to perform object class detection as path search onegheork.

Much previous work on shape matching has focused on clagsbilay. Several
measures of shape similarity have been proposed [2, 1]. ¢aeyistinguish objects
of different classes, while allowing for variations andat@fations within a class. How-
ever, these works assume the object to be in a clean imagebth@&voiding the problem
of localization, and the difficulties of contour detectidience, the rest of this review
focuses on methods handling clutter.

Our algorithm of section 5 is related to “local search” [4]dafinterpretation
trees” [11], as it iteratively matches model features td t@sge features. However,
at each iteration it meets an approximately constant, lomber of matching candi-
dates (only those connected to the latest matched segneetihrs5). Interpretation
Trees / Local Search approaches instead, need considgeaniamber of test features
(often all of them [4]). As a consequence, our method is fss likely to be confused
by clutter, and has lower computational complexitgdar in the number of test seg-
ments), thus it can afford processing heavily clutteredgesawith typically about 300
clutter segments, compared to only 30 in [4]). Besides, pathl] expect the model to
transform rigidly to the test image, while our method alldmsshape variations.
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Fig. 1. (a-c) Example links between edgel-chains. (a) Endpoiridpoint link. (b) Tangent-
continuous T-junction link. (c) Tangent-discontinuouskli(d) 8 segments on a bottle-shaped
edgel-chain. (e) A segment (marked with an arc) bridging t& b).

Deformable template matching techniques deform a templape so as to min-
imize some energy function, e.g. diffusion-snakes [7]sttamatching [5], and ac-
tive shape models [6]. These approaches require roughlindtion near the object to
be found. Additionally, several such methods need multgamples with registered
landmark points [6], and/or do not support scale change€tdmfer matching meth-
ods [10] can detect shapes in cluttered images, but, asggboit by [17, 13], they
need a large number of templates to handle shape variabath®@sand in [10]), and
are prone to produce rather high false-positive rates (&r2rpage in [10]). Recently
Berg et al. [3] proposed a powerful point-matching methaskoleon Integer Quadratic
Programming. However, the nature and computational caxitplef the optimization
problem require to explicitly set rather low limits on the ximaal portion of clutter
points, and on the total number of points considered frontéleimage (via a sam-
pling scheme). This is not suitable when the objects’ edgetpare only a fraction of
the total in the image. Besides, [3] uses real images as m&teit is unclear how it
would perform when given simpler, less informative handvadngs. The same holds
for [16], whose approach based on edge patches seems ahsuitgr setting. Felzen-
szwalb [8] applies Dynamic Programming to find the optimahiiions of the vertices
of a polygonal model on a regular image grid. Since the coatfmrtal complexity is
guadratic in the number of grid points, it is intractable swé a high resolution grid,
which is necessary when the object covers a small portioneoiithage (while [8] has a
60 x 60 grid, taking 5 minutes, using 80 x 180 grid would be 81 times slower).

In contrast to previous contributions, our method combihesattractive proper-
ties of dealing with highly cluttered images, allowing fdrape variations and large
scale changes, working from a single example, being robusttken edges, and being
computationally efficient.

3 Early processing

Detecting and linking edgel-chains. Edgels are detected by the excellent Berkeley
natural boundary detector [15], which was recently sudo#gspplied to object recog-
nition [3]. Next, edgels are chained and a smoothing splingeis fit to each edgel-
chain, providing estimates of the edgels’ tangent oriémtat
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Fig. 2. The six rules to build the Contour Segment Network. Theyemir(arrows) regular seg-
ments and bridging segments (marked with an arc). Rules @6ecrt segments over different
edgel-chaing:;.

Due to the well-known brittleness of edge detection, a aanitoften broken into
several edgel-chains. Besides, the ideal contour mighe beanchings, which are not
captured by simple edgel-chaining. We counter these idsulisking edgel-chains: an
edgel-chair; is linked to an edgel-chair, if any edgel ofc; lies within a search area
near an endpoint af; (figure 1). The search area is an isosceles trapezium. Tha min
base rests on the endpoint@f and is perpendicular to the curve’s tangent orientation,
while the height points away fromy ' . This criterion linksc; to edgel-chains lying
in front of one of its endpoints, thereby indicating that it coalthtinue over,. The
trapezium shape expresses that the uncertainty about thiewation ofc;’s location
grows with the distance from the breakpoint.. Note hgwan link either to an endpoint
of ¢, or to an interior edgel. The latter allows to properly de@ghwl-junctions, as it
records that the curve could continue in two directions (f&glb). Besides, we point
outthatitis not necessary for the endegfto be oriented like the bit af; it links to (as
in figure 1b). Tangent-discontinuous links are also posdifigure 1c).

The edgel-chain links are the backbone structure on whiehCibntour Segment
Network will be built (section 4).

Contour segments. The elements composing the network esatour segment3hese
are obtained by partitioning each edgel-chain into rougtrgight segments. Figure 1d
shows the segmentation for a bottle-shaped edgel-chaiaddiition to these regular
segments, we also construct segmémigging over tangent-continuous links between
edgel-chains. The idea is to bridge the breaks in the edges récovering useful seg-
ments missed due to the breaks.

4 Building the Contour Segment Network

Equipped with edgel-chain links and contour segments, weeady to build the im-
age representation which lies at the heart of this papeCtirgour Segment Network
(or justnetwork for short). To this end, weonnectsegments along edgel-chains, and
across links between edgel-chains. Thanks to the explmitating of the edgel-chains’
interconnections, the network supports robust matchirgapes in cluttered images.

! The dimensions of the trapezium are fixed, and the same in@drenents.



Definitions. Before explaining how to build the network, we give a few digfims.
First, every segment idirected in that it has éackand afront. This only serves to
differentiate the two endpoints, they have no semantiedgfice. As a convention, the
front of a segment is followed by the back of the next segmenthe edgel-chain.
Second, every edgel-chain link is directed as well: the kedgain c;, on which the
trapezium search-area rests, is at the back, while the etihgel-chainc, is at the
front. This also defines the front and back endpoints of a segroridging between
two edgel-chains. For clarity, we use the wtirkks between edgel-chains, andnnec-
tionsbetween segments.

Rules. The network is built by applying the following rules, illuated in figure 2.
These connect the front of each segment to a set of segmadtgsaack to another
set of segments. Thus the network structure is unconsttainé its complexity adapts
to the image content.

1. The front of a segment is connected to the back of the ngxheet on the same
edgel-chain.

2. When two edgel-chaing, co are linked at endpoints, the segmentpbefore the
link is connected to the segment@fafter the link.

3. Consider a T-junction link (i.e. from an endpoint@fto the interior ofcy). The
segment of; before the link is connected to theo segments of, with the closest
endpoints. As can be seen in figure 2.3, this records thatdh®ar continues in
both directions.

4. Lets be a segment bridging over a link framto c;. s is connected to the segment
of ¢o coming after its front endpoingndto the segment of; coming before its
back endpoint.

5. Two bridging segments which have consecutive endpomte@same edgel-chain
are connected. Here ‘consecutive’ means that no other sedieeinbetween.

6. Consider a bridging segmentvithout front connection, because it covers the front
edgel-chain, until its end. Ifc, is linked to another edgel-chaig, then we con-
nects to the segment af; coming after its front endpoint. An analogue rule applies
if s lacks the back connection.

Although they might seem complex at first sight, the abovesate pretty natural. They
connect two segments if the edges provide evidence thatthdyg be connected on an
ideal edge-map, where all edges would be detected and ggrdbained. Notice how
the last three rules, dedicated to bridging segments,emmatnections analog to those
made by the first three rules for regular segments. Therebmth types are treated
consistently.

Since each edgel-chain is typically linked to several ath#dre rules generate a
complex branching structure,reetworkof connected segments. The systematic con-
nections across different edgel-chains, together wittptbeer integration of bridging
segments, make the network robust to incomplete or brokgeledhains, which are
inevitable in real images. Figure 3 shows a segment on aehmttline, along with all
connected segments up to depth 8 (those reachable follaying 8 connections). Al-
though there is no single edgel-chain going all around th#ehdhere is a path doing
so, by spanning several edgel-chains. It is the task of tlledoming matching stage to
discover such desired paths.



Fig. 3. Network connectedness. All black segments are connectedifoto depth 8. They include
a path around the bottle (thick).

5 Basic matching

By processing the test image as described before, we olgaontour Segment Net-
work. We also segment the contour chains of the model, giset of contour segment
chains along the outlines of the object.

The detection problem can now be formulated as finding pdtteugh the net-
work which resemble the model chains. Let’s first considerpsoblem, termedasic
matching find the path most resembling a model chain, starting fronasisomatch
between a model segment and a test image segment. However et kinow a priori
where to start from, as the test image is usually covered lyge Imajority of clutter
segments. Therefore, we apply the basic matching algoudtsaribed in this section,
starting from all pairs of model and test segment with roygirhilar orientations. The
resulting paths are then inspected and integrated inta&téction hypotheses in the
next section.

We consider the object transformation from the model to éiséitnage to be com-
posed of a global pose change, plus shape variations duade riability. The pose
change is modeled by a translatiorand a scale change while class variability is
accommodated by a flexible measure of the similarity betweeriigurations of seg-
ments.

The basic matching algorithm. The algorithm starts with a basis match between a
model segment,,, and a test segmeht, and then iteratively matches the other model
segments, thereby tracing out a path in the network. Thehadtpathp initially only
contains{b,,, b; }.

1. Compute the scale changeof the basis match.

2. Move to the next model segmemtPoints 3-6 will match it to a test segment.

3. Define a set of candidate test segmenthese are all successarsf the current
test segment in the network, and their successors (figuréntdlding successors
at depth 2 brings robustness against spurious test segmbitts might lie along
the desired path.

2 All segments connected at its free endpoint, i.e. opposéehe connecting t&.



4. Evaluate the candidategach candidate is evaluated according to its orientation
similarity to m, how well it fits in the pathP constructed so far, and how strong its
edgels are (more details below).

5. Extend the pathThe best candidat®,..: is matched ton and{m, cy.s: } is added
toP.

6. Updateo. Re-estimate the scale change ofefmore details below).

7. Iterate.The algorithm iterates to point 2, until the end of the modgirsent chain,
or until the path comes to a dead eidd=£ ). At this point, the algorithm restarts
from the basis match, proceeding in the backward direcgonas to match the
model segments lying before the basis one.

For simplicity, the algorithm is presented above as grekdgur actual implementa-
tion, we retain the best two candidates, and then evaluaiepgbssible successors. The
candidate with the best sum of its own score and the scoreedfelt successor wins.
As the algorithm looks one step ahead before making a chibica, find better paths.
Evaluate the candidates. Each candidate test segment C is evaluated by the
following cost functior?

qc = q(m7 c, P) = wlaDla (m7 c, P) + wlled(m7 c, P) + ’LU9D9 (m7 C) (1)

The last termDgy(m, ¢) € [0, 1] measures the difference in orientation betweeand
¢, normalized byr.

The other terms consider the locationaih the context of test segments matched
so far, and compare it to the location xf within the matched model segments. The
first such spatial relation is

Dza(m,c,m:'% S" Dy, )

{m;,t;}eP
the average difference in direction between veciors; going from@:s center to the
centers of matched model segments and corresponding vectoes; going frome
to the matched test segmentqsee figure 4d). The second relation is analogous, but
focuses on the distances between segments

1 ; —>
Dia(m,e,P) = >, |ollmm] - [l

{mi,t;}€P

whered,,, is the diagonal of the model’'s bounding-box, and heség is a normal-
ization factor adapted to the current scale change estimataus, all three terms of
function (1) are scale invariant.

The proposed cost function grows smoothly as the modelfoemation departs
from a pure pose change. In particular thg, term captures the structure of the spatial
arrangements, while still allowing for considerable sheggation. Function (1) is low
whenc is located and oriented in a similar way ias in the context of the rest of the
shape matched so far. Hence, it guides the algorithm tovwapigh of test segments
with an overall shape similar to the model.

% In all experiments, the weights atg, = 0.7, wiq = 0.15, wp = 1 — wia — wiq = 0.15.
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Fig. 4. Basic matching. (a) Iteration 1: basis segméit candidatesC with ¢. < 0.3 (black
thin), and best candidate,.: (thick). (b) Matched pattP after iteration 4. (c) Model, with basis
segmenb.,,, and segments matched at iteration 1-4 labeled. (d) Exanguiows used iD;,, D;q4.

Analyzing the values of. over many test cases reveals that for most correct can-
didatesq. < 0.15. In order to prevent the algorithm from deviating over a ghps
incorrect path when no plausible candidate is availablediseard all candidates with
q. above the loose threshalg, = 0.3. HenceC — {c|q. < g }-

In addition to the geometric quality. of a retained candidate we also consider
its relevancein terms of the average strength of its edggls € [0, 1]. Hence, we set
the overall cost of: to ¢. - (1 — 7.). Experiments show a marked improvement over
treating edgels as binary features, when consistentiyodim edge strength here and
in the path evaluation score (next section).

Update 0. After extendingP the scale change is re-estimated as follows. Lét,
be the average distance between pairs of edgels along thel seginents, ané, be
the corresponding distance for the test segments. Then, set%. This estimation
considers the relative locations of the segments, togettieitheir individual transfor-
mations, and is robust to mismatched segments within a agoegh (unlike simpler
measures such as deriviagfrom the bounding-box areas). Thanks to this stejis
continuously adapted to the growing path of segments, wikiciseful for computing
D4 when matching segments distant from the basis match. Durafressariability and
detection inaccuracies, the scale change induced by asiagment holds only locally.
Properties. The basic matching algorithm has several attractive pt@sedue to op-
erating on the Contour Segment Network. First and forenadgyery iteration it must
chose among only a few candidates (about 4 on average),$®oaly segmentson-
nectedo the previous one are considered. Since it meets only fetnadtors, it is likely
to make the right choices and thus find the object even in anhally cluttered images.
The systematic exploitation of connectedness is the keyndrforce of our system. It
keeps the average number of candiddddsw, andindependenof the total number of
test segmentg. As another consequence, the computational complexifyrfaressing
all basis matches i©(T'M D log?(M)), with M the number of model segments. In
contrast to “local search” [4] and “interpretation tree&1], this islinear in 7', mak-
ing it possible to process images with a very large numbeitwifer segments (even
thousands). Second, the spatial relations used;in D;,; can easily be pre-computed



for all possible segment pairs. During basic matching,et#hg a candidate takes but
a few operations, making the whole algorithm computatigrefficient. In our Matlab
implementation, it takes only 10 seconds on average to psadbe approximately 1000
basis matches occurring when matching a model to a typisalrteage. Third, thanks
to the careful construction of the network, there is no needtfe object contour to be
fully or cleanly detected. Instead, it can be interruptesiateral points, short parts can
be missing, and it can be intertwined with clutter contours.

6 Hypothesis integration

Basic matching produces a large $¢t= {P;} of matched path®;, termedhypothe-
ses Since there are several correct basis matches to staralang the object contour,
there are typically several correct hypotheses on an obsjstzince (figure 5b+c+d). In
this section we group hypotheses likely to belong to the saloject instance, and fuse
them in a singleéntegrated hypothesisThis brings two important advantages. First,
hypotheses matching different parts of the same model oomtwain, are combined
into a single, more complete contour. The same holds for tingses covering different
model chains, which would otherwise remain disjoint (fighd@. Second, the presence
of (partially) repeated hypotheses is a valuable indicatibtheir correctness (i.e. that
they cover an object instance and not clutter). Since thie bagtcher prefers the cor-
rect path over others, it produces similar hypotheses wiaetirgy from different points
along a correct path (figure 5b+c). Clutter paths insteaolwvgnuch more randomly.
Hence, hypothesis integration can accumulate the evidenoeeyht by overlapping hy-
potheses, thereby separating them better from clutter.

Before proceeding with the hypothesis integration stageevaluate the quality of
each hypothesi® € H. Each segment matchn, ¢t} € P is evaluated with respect to
the others using function (1y:(m, ¢, P\{m, ¢t} ). Whereas during basic matching only
segments matchdakeforewere available as reference, here we evaldatet} in the
context of the entire path. The score{of:, ¢} is now naturally defined by setting the
maximum valuey, of ¢ as roof:q;, — ¢ (m, t, P\{m,t}). Finally, the total score of
P is the sum over the component matches’ scores, weighed byréhevance (edgel

strengthyy)
oP) = — 5 i+ (i —q (m,t, P\{m, 1}))
— Gn t qth q ) Uy ’
{m,t}eP
the normalization b)él— makesp range in0, | P|]. In order to reduce noise and speedup

further processing, we discard obvious garbage hypothssasng below a low thresh-

old ¢¢p, = 1.5: H « {P|p(P) > dtn}.
Hypothesis integration consists of the following two ptgase
Grouping phase.

1. Let A be a graph with nodes the hypothe®gsand arc{P;, P;) weighed by the
(in-)compatibilitycs;,, between the pose transformationgRf P;: cim (Pi, P;) =
L(c(Py, Pj) + c(P;, P;)) , with

[t; — t;] oi 0j
c(Pi, Pj) = ——F -max | —, =
(PePi) = g, "\ oy
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Fig. 5. Hypothesis integration. a) mug model, composed of an outéaa inner chain (hole). b-
d) 3 out of 14 hypotheses in a group. b) and c) are very sinalad, arise from two different basis
matches along the outer model chain. Instead, d) covers tiggsrhole. e) All 14 hypothesis are
fused into a complete integrated hypothesis. Thanks teew&laccumulation, its score (28.6) is
much higher than that of individual hypotheses (b score} R8te the important variations of
the mug’s shape w.r.t the model.

The first factor measures the translation mismatch, nomeglby the scale change
o, while the second factor accounts for the scale mismatch.

2. PartitionA using the Clique Partitioning algorithm proposed by [9]cEaesulting
group contains hypotheses with similar pose transformatidhe crux is that a
group contains either hypotheses likely to belong to theesahject instance, or
some clutter hypotheses. Mixed groups are rare.

Integration phase. We now combine the hypotheses within each gréup A into a
single integrated hypothesis.

1. Letthecentral hypothesi®, of G be the one maximizing

o(Fi) - > ‘Pi P

P;€{G\P;}

- 6(Py)

where|P; (| P;| is the number of segment matches present in iytland P;.

The central hypothesis best combines the features of hawjogd score and being
similar to the others. Hence, it is the best representafitheogroup. Note how
the selection ofP, is stable w.r.t. fluctuations of the scores, and robust ttteriu
hypotheses which occasionally slip into a correct group.

2. Initialize the integrated hypothesis@s; = P., and add the hypothedisresulting
in the highest combined sco#€G;,.; ). This means adding the parts/®that match
model segments unexplained 8y, (figure 5d, with initialG;,,; in 5b). Iteratively
add hypotheses untfl(G;,: ) increases no further.

3. Score the integrated hypothesis by taking into accouypetittons within the group,
so0 as to accumulate the evidence for its correctngss,,; ) is updated by multi-
plying the component matches’ scores by the number of titneg are repeated.
Evidence accumulation raises the scores of correct intesgjleypotheses, thus im-
proving their separation from false-positives.

In addition to assembling partial hypotheses into competgours and accumulating
evidence, the hypothesis integration stage also enaldegetiection of multiple object



instances in the same test image (delivered as separageaitee hypotheses). More-
over, the computational cost is low (1-2 seconds on average)

The integrated hypothes@s,; are the final output of the system (calléetections.
In case of multiple detections on the same image locatiorkee@ only the one with
the highest score.

7 Results and conclusions

We present results on detecting five diverse object clags®tids, swans, mugs, gi-
raffes, apple logos) over 255 test imade®vering several kinds of scenes. In total, the
objects appear 289 times, as some images contain multgikmnices. As all images are
collected fromGoogle ImagesndFlickr, they are taken under varying, uncontrolled
conditions. While most are photographs, some paintingsyithgs, and computer ren-
derings are included as well. The target objects appear @wede range of scales.
Between the smallest and the largest detected swan theseadegfactor of 4, while for
the apple logos class, there is a factor of 6. The systeménginly a single hand-drawn
example of each class (figure 7, i2-j3), and its parameteralarays kept fixed.

Figures 6 and 7 show example detections. In many test cas@bjbct is success-
fully and accurately localized in spite of extensive clytend even when it comprises
only a small portion of the image (e.g. b1, b3, el, h2). Theidant presence of clutter
edges is illustrated in a2, b2, c2, with the edge-maps foesag, b3, c3. The object
contours form only a small minority of all image edges (abbi30). The capacity of
handling large scale changes is demonstrated in d1 and etewvie mug sizes dif-
fer by a scale factor of 3. Moreover, the individual shapethefdetected objects vary
considerably, and differ from the models, hence showingyséem’s tolerance to class
variations. Compare d3 and e2 to the bottle model, or theatianis among different
mugs. In d1 we overlay the model after applying the best péessianslation and scale.

Five of the six mugs imaged in figure c1 are found by the syspeoving its ability
to detect multiple object instances in the same image. Agples of the accuracy of
our method, figures d2 and g2 display the image contours redtththe object for
cases d1, d3, and g1 (the other cases are reported as thargpbodes of the matched
contours).

We quantitatively assess performance as the number ofataietections (bounding-
box on an instance of the target object class) and falseiyesifother detections). All
five models have been matched to all 255 test images. The ¢hisles on plots i2-j3
depict the percentage of correct detections (detectite)-varsus the incidence of false-
positives (number of false-positives per image FPPI). Hstesn performs well on all
five classes, and achieves a remarkable 82% average detettcat the moderate rate
of 0.4 FPPI. For a baseline comparison, we processed theadatso with a simple
Chamfer Matching algorithra. The model is shifted over the image at several scales,
and the local maxima of the Chamfer distance give detectjqgrotheses. In case of
multiple overlapping hypotheses, only the strongest ometaned. As the plots show

* The dataset is available on our website: www.vision.ee.etth-ferrari
5 While this does not include multiple orientation planes, betieve they would improve per-
formance only moderately [13].



(thin curves) the Chamfer Matcher performs markedly wohsa tour approach, and
reaches an average detection-rate of only 39% at 0.4 FPRIsAointed out by [13],
the reason is that the Chamfer distance is about as low deickdgels areas as itis on
the target object, resulting in many false-positives hadibtinguishable from correct
detections. The problem is particularly outspoken in ottirsg where only a single
template shape is given [17]. Our approach instead, is mwaie dhistinctive and thus
brings satisfactory performance even in these highlyetatt images.

In conclusion, the experiments confirm the power of the prieskapproach in deal-
ing with extensive clutter, large scale changes, and iditaas shape variability, while
taking only a single hand-drawn example as input. Moredver robust to discontin-
uous edges, and is computationally efficient (the complasitinear in the number
of image segments). As one limitation, models cannot gelésor branch, therefore
excluding some objects (e.g. chairs, text). Neverthelssy object with a distinctive
silhouette can be modeled by a set of disjoint outlines, éweedetailed drawing would
feature crossing/branchings (e.g. most animals, toots|@gyos). Future work aims at
addressing this issue, as well as learning the class viiydbom a few examples, to
apply it for constraining the matching.
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Fig. 6. Results (first page). See text for discussion.
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Fig. 7. Results (second page). See text for discussion.



