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Abstract on the intensity profile along rays emanating from it). Matas

et al [4] propose regions as connected components of pix-
We present a novel approach for establishing multiple-view els which are all brighter or darker than all pixels on the re-
feature correspondences along an unordered set of imagesyion’s contour, or as regions bounded by cycles of edge pix-
taken from substantially different viewpoints. While re- els. Baumberg [3] describes regions with their location and
cently several wide-baseline stereo (WBS) algorithms havescale determined by a multi-scale Harris corner detector,
appeared, the N-view case is largely unexplored. In this pa- while an adaptive procedure based on the second moment
per, an established WBS algorithm is used to extract andgradient matrix recovers orientation and skew. Mikolajczy
match features in pairs of views. The pairwise matchesand Schmid [2] present a similar extraction approach, but
are first integrated into disjoint feature tracks, each rep- dealing with larger scale changes. Lowe [6] proposes the
resenting a single physical surface patch in several views. SIFT detector, where a feature’s location and scale are de-
By exploiting the interplay between the tracks, they are ex-termined by extrema of a DoG function in scale space, and
tended over more views, while unrelated image features areits orientation by the dominant, local image gradient ori-
removed. Similarity and spatial relationships between the entation. It is less immune against viewpoint changes, be-
features are simultaneously used. The output consists ofng only invariant under similarity transformations. Tatid
many reliable and accurate feature tracks, strongly cottnec Carlsson [7] offer an interesting alternative where a corne
ing the input views. Applications include 3D reconstruetio is characterized by intensity profiles on line segments con-
and object recognition. The proposed approach is not re- necting it to other corners. This avoids the problem of con-
stricted to the particular choice of features and matching structing affinely invariant regions, but it is less locadan
criteria. It can extend any method that provides feature cor does not produce local shape descriptions.

respondences between pairs of images. While these methods have focused on two views, this pa-
per presents a method for obtaining wide-baseline matches
1. Introduction among a larger set of unordered images. The output is a set

of region-tracks each aggregating the image regions of a

In the last few years, several wide-baseline stereo (WBS)certain physical surface patch along several views. The onl
matching algorithms, capable of finding correspondencesajternative approach to date is recently due to Schaffalisk
between two images taken from substantially different and zisserman [5]. Wide-baseline N-view matches are pre-
viewpoints have appeared. In [1, 3, 4, 2] local features arecious for a number of applications. In 3D reconstruction
extracted independently from the two images, then charac-(e.g. from uncalibrated images), the 3D model of a scene
terised by invariant descriptors and finally matched. The could be generated from still images rather than video.In
power of these approaches is twofold. First, local featuresobject recognition, appearance-based strategies codletbe
bring tolerance to occlusions. Second, the construction pr  veloped with a limited number of reference views [6], bridg-
cess and descriptors are invariant under affine deforngtion ing in fact the gap with model-based approaches.
allowing large viewpoint changes, and under linear photo- | order to build region-tracks, a natural idea is to ap-
metric transformations, allowing changes in illumination ply an established WBS algorithm to view pairs and then

Tuytelaars and Van Gool [1] construct small image re- jntegrate the outputs. A naive implementation is bound to
gions around corners (nearby edges provide orientation andajl, due to two main problems. The first is structural: WBS
skew, while scale and stretch are given by the extrema of ag|gorithms return sets of matches betwegeiirs of views.
2D affinely invariant function) and intensity extrema (béise  Region-tracks must be derived from this, even in the pres-

*This research was supported by EC project CIMWOS. TinneéFuyt _ence of .matChmg errc.)rs’ WhICh.(.:an lead to contraddictory
laars is a Postdoctoral Fellow of the Fund for Scientific ResteFlanders  INformation about their composition. The second problem
(Belgium) is statistical: suppose a physical region is visible wiews,




there is no guarantee that the image region will be extractedthe views. Such a region-track should be in the fagm=

in all views. Suppose the probabilify of extracting the

{A;, B, ..., J.}, indicating that regiong,, B,,, ..., J, are

region is the same, and independent, in every view whereall in mutual correspondence, and represent a single physi-

it is visible. The region will be extracted in its views

with probabilityp™. Thus, even assuming a perfect matcher,
the probability decreases exponentially with the number of
views. Failures to match even lower the odds. We build
upon a multi-scale extension of the WBS algorithm pro-
posed in [1]. However, these problems are common to all

WBS schemes based on independently extracted features.

In practice, given 3 views, v9, v3, the method typically
finds many matches between view pé&if, v2) and view
pair (v1,v3), but the two sets of matches will often dif-
fer substantially. A smaller number of regions (typically
half) are matched over the three views. It goes without say-
ing that taking more views, the situation deterioratedeirt
(e.g.: only a few, if any, 5-view matches can be found).
Without ana priori ordering of the input image set, we
start by applying [1] to all pairs of views. This may seem
computationally expensive, but the application is meant fo
wide baseline conditions, in which case there will only be a
limited number of views (typically 10 to 30). Otherwise,
other and more appropriate approaches than WBS coul
be applied. Besides, this allows to use all initial matches,
which in turn reflects on the quality of the final results.
In section 2 we propose an algorithm to construct clean,
disjoint region-tracks from the large set of all pairwise
matches, taking explicitly into account the inevitablegre

ence of matching errors. The registration between the re-

gions within each region-track is then improved by a novel

way to refine the affine transformations between them (sec-
tion 3). Unmatched regions are propagated to other views

by exploiting the geometric and photometric transforma-
tion of nearby matches. This extends the region-tracks to
previously uncovered views. This step is vital for escaping
the aforementioned statistical trap. Finally, erronecarsgp

of the region-tracks, due to original mismatches and occa-

sional mispropagations, are removed based on the analysi
of the spatial arrangements of multiple regions in pairs of

views (section 5). Section 6 presents experimental results.

and concludes the paper. The approach is not restricted t
[1], but can complete any other WBS method based on local
affine features.

2. Extracting region-tracks

The two-views matching algorithm [1] is applied between
all pairs of views(V;, V;), i # j producing separate sets of
pairwisematches, in the forni4,, B,,,), indicating that re-
gion A in view V; has been matched to regidhin view
V. In order to fulfill the main goal, we need to inte-
grate this information inteegion-tracks each aggregating

e

calregionR as it'simaged on views m, ...., z. The region-
tracks should be mutually disjoint, i.e.: no two regioneks.
should share a common region.

Define a similarity measure between two regich$3

dRGB(4, B)
=50 ) @
whereNCC is the normalized cross-correlation between the
regions’ greylevel patterndRGB is the average pixel-wise
Euclidean distance iRG B color-space after independent
normalization of the 3 colorbands (necessary to achieve
photometric invariance) R, G, B ranges in[0, 255]. The
two regions are aligned by the affine transformation map-
ping A to B, before computation. This mixed measure
proved considerably more discriminant tHe@'C alone in
various experiments.

How to get region-tracks out of pairwise matches ? Let's
consider the graplir where vertices represent regions and
edges are weighted by function (1). No edge is present

etween two unmatched regions. Suppose for a moment
hat the region extraction and two-views matching processe
were perfect, so that there are no mismatches and no miss-
ing matches. In this ideal casé&; will be composed of
completely connected, disjoint subsets of vertictis|(es.
Since each clique corresponds to a region-track, our task is
easily solved (figure 1a).

Unfortunately real data is plagued by two kinds of errors:
mismatches, which insert spurious edge&jrand missing-
matches, which maké&' lack some correct edges (figure
1b). With these errors? is no longer in a disjoint-cliques
form and ambiguities about the composition of the region-
tracks arise. Three properties come to help. First, magchin
is transitive: if (4;, B,,) and (B,,,C,) are matches then
(4;,C,,) mustbe a match as well. Second, a region can-
got be matched to two different regions which are on the
Same view (one-to-one-constraint). Third, given the cor-
rect match(A4;, B,,) and the mismatcli4;, C,,), the sim-

sim(A4, B) = NCC(4, B) + (

ilarity measure is, almost always, higher for the former.
propose a conflict-resolution algorithm (CR) that ex-
ploits these properties to transforainto a disjoint-cliques
form. CR reconstructs missing edges and discovers spuri-
ous edges by the same basic processarigulation given

any two edges$4;, B;,) and (B, Cy,), the edgg4;, C,,)

is added ta& if not yet present. The two edges generating
the new one are itparents An original edge has no par-
ent (eaf). Two edgeq A4;, B,,) and(4;,C,,) are incon-

flict, as they violate the one-to-one-constraint. At least one
edge in a conflict is caused by a mismatch. Adding an edge
can generate a conflict, which is resolvedrbynovingthe
least weighted edge (i.e.: the match with the lower similar-

the image-regions of a certain physical surface patch alongity measure). When an edge is removed also the weakest



@" I" R {’ similarity of the mismatch might exceed the match’s one.

@ However, CR’s goal is not to find the optimal solution, but
@ h / instead to efficiently yield a reasonably good starting poin

view 1 @ ﬂ view 4 view 1 @ ﬂ view 4 ilarity. CR is guaranteed to find all conflicts, although it's

@ ’ not sure to always solve them correctly: in a few cases the
I | [

® # c

for the further processing stages.

@ : @ : The proposed approach cleans the initial set of matches,

view 2 e 3 view 2 view 3 yielding a coherent, conflict-free one, respecting the-tran

_ _ _ _ sitivity of matching and the one-to-one constraint. Hence

[ @ ﬂ e [ @ d e region-tracks are extracted out of a large set of conflictual

@_ LY _7 @ Na _7 pailrwise matches (1_0(_)Os.f0r 10views). CRis time-efficient,
=] ’ : >< e as it evaluates the similarity measure only when needed, and

on the weaker assumption that a correct match scores higher

@_ @ @ - @ cautious in that it has no fixed similarity threshold for rtje
@ L @ 1 ing a match, but instead only compares similarities, rglyin

@ @/ than a wrong match. This is important in this initial phase
view 2 views view 2 v where unnecessarily removing matches could compromise

Figure 1:a) ideal case, b) real case, dotted edges are mis- the performance of the further processing stages.
matches, ¢) and d): two steps of CR. Thick edges are in In the rest of the paper the following definitions are as-
conflict. sumed.T" is the set of all region-tracks? = {R, }vcus IS
a region-track, composed by image regions in viewslIf

of its parents is removed, unless the edge is a leaf. ThisR» € R we say that region-track is presentin view v.
is justified by the fact that, if an edge is considered a mis- ®vs = {R € I'|R, € R,Yv € vs} is the set of region-
match, then at least one of its paremtsstbe regarded as a  tracks present simultaneously in each view vs.
mismatch.

CR starts by triangulating the match with highest simi- 3 Refinement
larity. This new match is used to triangulate further. CR
recurses until no new edge can be constructed with the latLet R;, R, be two regions matched between two views. In
est generated one as a parent, or if this is removed as conseractical situations?; is not perfectly registered witR; as
quence of a conflict. Atthis point, the next match with high- they areindependentlextracted from the two views. It is
est similarity is triangulated, and so on. Cycles are awbide desirable to refine this initial match, so as to obtain a more
by not allowing the triangulation of a previously removed accurate correspondence and to provide better input to the
edge, thus ensuring CR’s convergence. After termination, propagation stage (section 4).
G is composed of disjoint cliques. Formally, R, should be affinely transformed such that

Figure 1b shows an interesting case. Fif(dBs, D) the resulting region maximises the similarity (1) with.
is triangulated from( A1, B2) and (A1, D4). This in turn This calls upon an algorithm that can browse a reason-
generate§ B2, C3) (from (Cs, D4) and (Bz, D4)). Now ably large range of the 6D affine space searching (an ap-
(Bs, Cs5) conflicts with (F», Cs), and the latter is removed  proximation of) the maxima while evaluating the similar-
as it has lower similarity measure (mismatch, figure 1c). ity function as few times as possible (computational cost).
Since(Bz, C3) survived, it combines witliA;, By) to give The affine space is decomposed into its translagior, ),
(A1, C3). No triangles can be further constructed based on scale(s,, s, ), rotation @) and shear) components. We
(A1, C3), so original edges are processedsn, I,) is tri- consider searching amypercube? bounded in all its di-
angulated from(Ey, F,) and(E4, I,), which then induces  mensions by predefined valuksA point in 2 is denoted
(F2, Hs). A conflict betweer(F», Hs) and(Gs, Hs) is de- A = (tz,ty, Sz, Sy, 0, ).

tected and causes the removal 6%, H3) (figure 1d). This Let RS be obtained by centerinB, around(0,0). The
calls upon the removal of its weakest pargfit, 1), which algorithm starts from the identity transformatidn= A, =
in turn causes the removal of grandparg@ht, 7). Finally, (0,0,1,1,0,0) and searches fot,,,... S0 that

the last possible edg&+s, I4) is added and the algorithm

terminates on the ideal solution (figure 1a). Az = arg max sim(Ry, ARS)

This example shows how CR discovers and solves am-
biguities in a conflictual set of matches. The conflicts are 1 our experiments: t, € [-14,14],t, € [-14,14],5. €
often hidden within the dataset, but are triggered by recur-(0.6,1.8],s, € [0.6,1.8],0 € [=2£, £1] h € [~1,1]. Discretization:
sive triangulation, and then disambiguated by maximal sim- 2 for translations, 0.1 for scaleé for rotation, 0.2 for shear




Figure 2: Example 2-dimensional non-convex function to
be maximized. Algorithms start fro(f, 0). Gradient De-
scent reaches poin, 20), while the proposed algorithm  Figure 3: Top-left: The small white region has been artifi-
iterates through(0, —19), (15, —19) and then reaches the  cially deformed by simultaneous translation, rotatioralsc
global maximun(15, —15). Notice the numerous foldings and shear 4 = (—5,0,1.4,1.3, Pi/7,0.4)) to the large

in the landscape. white one. The refined region (black) comes very close to
the correct solution. Top-right: region in a view. Bottom-
left: match before refinement, right: refined.

Let A(dim,val) be pointA with componentim set toval.
Letiy, fq be the bounds df along dimensior and

v? = max sim(Ry, A(d,v)RS) 2) In practical situations RF iterates 3 to 10 times. Given

maxr ~

v€Elia, fd] the search space boundaries and discretisation steps,above

be the value of the highest similarity induced by affine trans this amounts to 100 to 700 evaluations of the similarity mea-

formations along the straight line segment passing fram ~ SUre. Thus, RF is about as_fast as GD and is orders of mag-
starting atA(d, i,) and ending ati(d, f,). Computing (2)  Nitude faster than exhaustive search (3.5 mio for the same
for all dimensions yields 6 values!,, .d € 1...6, from parameters) or simulated annealing. This makes RF com-
which only the absolute maximumy,..; is retained. This putationally affordable for our purposes, where thousands

corresponds to evaluating similarity on 6 line segments con ©f refinements are required.

current |nA (rays)_ Po|ntA iS now moved to the afﬁne The reﬁn-ement algorithm -iS applledto a” region'tracks
transformation inducing..;. The process iterates until £ € ' provided by the conflict-resolution algorithm (sec-
stability. tion 2) so as to obtain globally optimal registration. To

The proposed algorithm (RF) only searches a predefined,aChieve this, all regions aR are refined towards the same
immutable hypercub® centered atl,, and can be seen as pivot-view. Thepivot-viewis selected as the one maximis-
a particular way of stepwise walking i, where each step ing the sum of similarities to all others views whekReis
occurs in a direction parallel to a coordinate axis and can bePresent. The sum of similarities for each view is computed
arbitrary large. after refinement to all other views. Note it is highly un-

RF is motivated by the observation that the similarity likely that a view whereR is mismatched will be selected
function generates spaces which are smooth, but highly@s pivot. This simple approach is independent of the order
non-convex, in which they show frequent and diverse fold- in Which the views are considered and makes all regions
ings. In such a situation, Gradient Descent (GD) cannot beWithin a region-track well globally aligned. A high qual-
relied on, as it gets stuck in the local maxima closestgo ity registration is important for the following propagatio
RF does not blindly climb the closest steepest hill, but in- Stage.
stead its sight extends, on 6 rays, until the boundaries of
). Therefore, at every iteration, it gets another chance to/4 Propagation
notice a higher hill elsewhere and will eventually jump on
it. The new hill is climbed until its tip, or until a search- As pointed out in section 1, many regions of a vigwdo
ing ray intersects an higher hill, and so on. The chances ofnot get matched to another vielg even though the fea-
finding the absolute maximum are much higher than for GD ture is visible in the image (e.g.: the corresponding region
and are fairly high on absolute in the kind of spaces we con-has not been extracted, or maybe it has been extracted but
sider, which are highly non-convex, but also not very large the matching failed). This section describes an approach
(R2 roughly corresponds t&;). Figure 2 exemplifies RF's  for exploiting the information supplied by a correct match
behaviour in 2 dimensions and shows a typical case wheren order to generate many other correct matches. Consider
it succeeds while GD fails. a regionC; in V4 without correspondent iy (candidate



Note that this approacheneratesa new region inV;
which might not have been originally extracted (differgntl
than in [5], where the geometric transformation is used only
to guide the search for further matches). This is important
as it helps solving the main problem exposed in section 1:
the quick drop of the probability that a region is extracted s
multaneously in several views. Indeed propagation stgongl|
increases the chances that a region will be put in correspon-
dence, as it suffices that any nearby region undergoing a
similar image transformation is correctly matched.

For every pair of views, m,l # m, the propagation al-
gorithm is applied to all candidate regiobg\ ®,,, which are
present inl, but not inm, using as support the regiots,,

region) and a se¥ = {Si} of matchedsupportregions in a!ready_matched between the two vieyvs. _E_verytime are-
the neighborhood of C; (figure 4). If Si andC; lie on gion R; is successfully propagated to view, it is added to

the same physical surface (e.g.: a facet of an object), therf€gion-trackR’. Propagation doesn't generate new region-
they will probably be mapped t&, by similar affine and tracks, buextendgurrently existing ones. As consequence,

Nut b ;&a

I Crunchy/ 8
b
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Figure 4: The candidate region (spoon) is propagated to
the right view via the affine transformation (A) of a support
region (top).

photometric transformations. For eve§§ € ¥ do: the region-tracks grow larger (i.e.: they are present inemor
views) and the connectedness between any subset of views
1. Compute the affine transformatioti mappings: to vs, i.e.: the amoun®,s| of region-tracks present simulta-
S5 in view V. neously in eachy € vs, is strongly increased (as shown in

section 6). Note also that a single propagation creates many
new pairwise matches, as all regions in the track are im-
plicitly assumed matched to the newly added region. These
‘transitive propagationsontribute actively to increasing the

2. Compute the color transformatiol’s
{sr,sq,sp} betweenS: and Si. This is com-
posed by the scale factors on the three colorbands

3. ProjectC; to view V; via A? : C% = A*Cy. inter-view connectedness.
4. Evaluate the similarity betwee, andC; after apply- . .
ing the color transformatiof},, S. Topologlcal filter
) ; . ARGB(Th . sC1, C3) The region matches along the views might still contain
sim; = NCC(TpqpCh,C3) + (1 - f&B ) some mismatches. These are due to original mismatches

that survived the conflict-resolution stage and occasional

Applying T, ; allows us to use the unnormalized color- mispropagations constructed on them. A new method for
distancedRGB on the raw image pattern, because color removing mismatches based on a topological constraint for
changes (e.g.. darker light) are now compensated for.lriPles of regions is introduced.
This is an advantage as it provides maximal discriminative
power. 5.1 The sidedness constraint
We retainC%°t, with best = argmax; sim;, the region _ _ L oma s S _
that best matcheS; and refine it by the algorithm of section ~ €onsider a triple( 2y, Rling 0f3reg|ons inV; and their
3, yieldingC;*/ . This refinement step adapfge** to the ~ corresponding regionglz,, It;, i;) in V. Letc, be the
local plane orientation and counters perspective efféioes (- Center of region?, . The function

. . . . . ref
affmg approximation is valid only E)n a Ipcal scalé)zf is side(RL, B2, R®) = sign((c2 x c2)cl) 3)
considered correctly propagatedsifn (7, 5C1,C5” ) >
tprop (tprop = 1.0 in our experiments). Note that refine- takes value-1 if ¢! is on the right side of the directed line
ment tends to raise the similarity of correctly propagatedr c2 x ¢3 from c2 to ¢2, or valuel if it's on the left.
gions much more than the similarity of mispropagated ones, The equation
bringing an important benefit: the increase in Hepara- ) Lo s ) Lo s
tion between the distributions of the similarity for misprop- side(Ry, Ry, Ry) = side(R, R;, R3) )
agated regions and for correctly propagated ones. Exensiv
experiments have shown the last thresholding step to be re
markably more effective after refinement.

states that! should be on the same side of the line in both
views (figure 5). Thesidedness constraiift) holds for all
triples of coplanar regions, because in this case prop@)ty (

2In all experiments a circle of radiub of the image width has been is viewpoint invariant. EQ_Uation (4) happens to_ be Va"d’fils
used for most non-coplanar triples. A triple for which equation




Figure 5: Sidedness constraint! should be on the same
side of the directed line going fron? to c2 in both views.

(4) doesn’t hold is said twiolate the constraint. This hap-

mismatch and removed frod. At each iteratiorhy (7) is
recomputed based on the remaining region® iand even-
tually the most violating region is removed. The process
iterates until no more regions can be removed. It's wise
to store the terms of the suh{i) during the first iteration.
In the other iterationgy (i) can be quickly recomputed by
retrieving and adding up the necessary terms, making the
computational cost almost independent on the amount of it-
erations.

During the first iterations, when several mismatches are
still within ®, even correctly matched regions might have a
high hx, because of their participation in triples including

pens when at least one of the three regions is mismatchedy mismatch. However, the mismatched regions will have an
or when the regions are not coplanar and there is importantgyen highethy, because they will be involved in the very
camera translation in the direction perpendicular to the 3D ggme triples, plus other violating ones. Thus the worst mis-
scene plane containing their centers. The latter can caeate match R, i.e.: the region which is located i, farthest

parallax effect strong enough to moe# to the other side
(parallax-violatior). However, this happens only to a small
minority of triples, for any given pair of views, as also con-
firmed by our experiments. Region-track$, R’, R* vi-

from where it should be, has the highest chance to violate
each individual constraint and therefore will have the high
esthy. OnceR,, is removed, alhy will decrease, and the
second worst mismatch will have the highest value. When

olate or respect equation (4) independently of the order inonjy correct matches are left, small error percentages due
which they appear in the triple. The three points should to occasional parallax-violations are still reflected Ihy.
be cyclically ordered in the same orientation (clockwise or However, these will probably be lower than,,., causing

anti-clockwise) in the two images in order to satisfy (4).

5.2 Removing mismatches

A triple including one, or more, mismatched regions has
higher chances to violate the (4). When this happens we
can only conclude that at least one of the regions in theetripl

the algorithm to stop.

Various experiments on artifical and real configurations
confirmed these theoretical considerations. The algorithm
proved very robust, by withstanding large amounts of mis-
matches. In experiments with various scenes, up to 65% of
the regions where translated to uniformly distributed ran-
dom locations. The algorithm successfully removed all re-

is mismatched, but we do not know yet which. While one located regions, while losing at most a few correct matches.

triple is not enough to decide, this information can be recov

ered by considering all triples simulteneously. By integra
ing the weak information each triple provides, it's possibl

to robustly discover mismatches. The key idea is that in-
correctly located regions will be involved in a higher share
of violations. [8] already noted the benefits of analysing

topological configurations of points and lines.

Equation (4) is checked for all triples of regions
(R', R/, RF), R", RV, R* € ®1,, with ®,, the set of all re-
gions present in both;, V5. Let® = {i|R! € ®15}. The
algorithm starts by computing

>

G ke®\i,j>k

h(i) = |side(R{, R}, RY) — side(Rj, R}, R5)| (5)

the amount of violation&’ is involved into, for alli € ®.

If all region-tracks of a triple are uniformly random dis-
tributed on the two images, thén (i) has expected value
0.5 for the three. This, together with experimental measure-
ments on mismatch-free configurations, helped us selecting
tiopo = 0.15.

The topological filter is applied to all pairs of views
I,m,l < myielding a set{(R;, R,,)} of mismatches per
pair. A single mismatch still doesn’t tell which one &f
or R,, is wrong. However, this information can be infered
from the set of mismatches related to a single region-track
(i.e.: if R; is involved in 5 mismatches an,, in only 1).
Removing eitherR; or R, suffices to eliminate the mis-
match. We remove the minimum amount of regions from
each region-track, such that all mismatches are eliminated
This approach eliminates all detected mismatches, while

h(i) is then normalized w.r.t. the total amount of possible minimally reducing the region-tracks, thus enhancing gual

violations any single region can be involved into

h()

b (@) = (n—1)*(n—2)

, n=|®|.

The most violating regio®®, with w = arg max; hx(2) is
determined. Ifn(w) > tiopo, regionR™ is considered a

ity without sacrificing inter-views connectedness.

6. Results and conclusion

The multi-view matching scheme has been tested on many
sets of images (scenes). All reported scenes have been pro-



views | tracks | CR views | tracks | CR

911 340 51 all 10 views 11 0

91112 | 295 26 91214 | 230 13

591112| 204 9 39 273 39
359111213] 153 359 254 21
35911121314/ 100 35911 | 208 7
235911121314 69 3591115| 132 5
1235911121314 29 23591115 124 3

Ol |N| W

Table 1. Number of tracks for Valbonne.

Figure 6:Valbonne. 230 3-view matches on view$2, 14.

cessed with the same set of parameters reported in the pape
In the first example 10 images (ids g
1,2,3,5,9,11,12,13,14,15) from théalbonne scene (6), p
were processed. This image set poses several challenge
like significant viewpoint differences and uniform colors
and textures. Table 1 shows the number of region-tracks
present in various subsets of views. Note the high entries
for 4 views and more, indicating strong connectedness
between views (e.g.: about 200 4-view matches). The
statistical problem stated in section 1, namely the rapid
decrease of the chance of obtaining a N-view track, with
increasing N, has been remedied: the amount of N-view
matches gracefully decreases (close to linearly) with
increasing N and corresponds well with failing visibility.
The third column (CR) reports the amount of matches
just after forming the tracks, via the algorithm proposed
in section 2. At this stage, the tracks are still vulnerable,
and their number decays exponentially (e.g.: 51 2-view g=
matches in(9, 11) roughly half in(9,11,12) and only 3 in
(3,5,9,11,12,13)). However, the first stage’s main goal
is to solve the structural problem, by formatting the data
in region-tracks. It's the combined effect of refinement, |
propagation and topological filtering that then counters :
the statistical problem, as demonstrated in the secon : .
column of the table. The increase in the amount of N-view Figure 7B|rthday Left: top to bottom: Viev\ﬁ 8’ 7. R|ght
matches is strong, and many of them now exist even whena 5-view track.
nonecould be found in the original data (from 9 views
on). The values in table 1 compare favorably against taken from almost opposite directiorig §). Nevertheless,
the ones reported in [5] , corroborating the effectivenessthe matches well cover the commonly visible parts of the
of our approach. The correctness of the tracks scene. The telephone, and the picture of the girl abovesit, ar
present simultaneously in a set of views is evaluated  affected by strong out-of-plane rotation, but still have-se
as 1 — F-Tiha—1y Whereerrors is the total amount  eral correct matches. 124 region-tracks (98% correct) are
of incorrectly located regions, computed over all tracks present in another four images (figure 8). Note the quality
and views. This measure ranges frongall mismatches)  of the tracks on the mousepad, which undergo strong image
to 1 (perfect tracks), and takes into account that a track scaling and rotation (view8, 6) , and the lack of 4-view
can bepartially correct, if only some of its regions are matches on the book. This is correct, as it's not visible in
mis-located. Figure 6 shows 230 tracks (96% correct), view 4. Robustness to scale changes is demonstrated in fig-
distributed over the whole church, in vies 12, 14). ure 9, where viewpoint 5 is significantly closer to the scene
The Birthday scene features a more complex geometry than 4. Nevertheless, the two cameras see largely the same
than Valbonne and more diverse textures. Eight very differ- part of the scene, and the system produces 178 tracks (97%
ent viewpoints serve as input (ids 1 to 8). Figure 7 shows correct), densely covering the images.
135 tracks (95% correct) on 3 views. Two of the views are  Table 2 summarizes the large increase in N-view matches




views | tracks | CR views | tracks | CR
16 241 48 all 8 views 46 0

146 185 14 28 170 25
1246 | 124 4 238 161 16
12346| 108 2 2378 | 120 3
123468 81 1 23478 93 1

1234678 79 0 123478 81 0

Table 2. Number of tracks for Birthday.

Figure 8:Birthday. Top: viewd, 2. Bottom: viewsl, 6.

brought by the method. The amount of N-view matches de- Figure 9: Top: view 4. Middle: view 5. Frame: 5 views
creases close to linearly with N. This is particularly sfgni ~ from a cereal-box track.

cantin this scene, where the parts visible in all N-views als
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