
Global and Efficient Self-Similarity for Object Classification and Detection

Thomas Deselaers and Vittorio Ferrari
Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland

lastname@vision.ee.ethz.ch

Abstract
Self-similarity is an attractive image property which has re-
cently found its way into object recognition in the form of
local self-similarity descriptors [5, 6, 14, 18, 23, 27] In this
paper we explore global self-similarity (GSS) and its advan-
tages over local self-similarity (LSS). We make three con-
tributions: (a) we propose computationally efficient algo-
rithms to extract GSS descriptors for classification. These
capture the spatial arrangements of self-similarities within
the entire image; (b) we show how to use these descrip-
tors efficiently for detection in a sliding-window framework
and in a branch-and-bound framework; (c) we experimen-
tally demonstrate on Pascal VOC 2007 and on ETHZ Shape
Classes that GSS outperforms LSS for both classification
and detection, and that GSS descriptors are complementary
to conventional descriptors such as gradients or color.

1. Introduction
Good image descriptors are the basis for many successful
methods in computer vision. Shechtman et al. [23] first pro-
posed a descriptor based on local self-similarities (LSS).
Compared to conventional image descriptors, LSS is in-
direct: instead of measuring features such as gradients or
color of a pixel, it measures how similar they are to the
pixel’s neighbors. The LSS descriptor captures the inter-
nal geometric layout of local regions and can be compared
across images which appear substantially different at the
pixel level.

This descriptor has been quickly adopted in the object
detection and classification community [5, 6, 14, 18, 27].
While the original work [23] matches ensembles [4] of these
descriptors, most later works use it as yet another feature
in the bag-of-visual-words framework. This makes it easy
to use LSS descriptors in the machine-learning frameworks
which proved to work well for conventional local descrip-
tors [6, 14, 18, 27].

In this paper we demonstrate that self-similarity can and
should be used globally rather than locally to capture long-
range similarities and their spatial arrangements. Fig. 1
shows two selected patches and their global self-similarity
(GSS), as the patch correlation with the entire image. Con-
tiguous (patch 1) and repeating (patch 2) structures can be
well recognized. Patch 2 shows that GSS can capture long-

Fig. 1: Global self-similarity: self-similarity of two image
patches with their respective images.

range similarities within an image. The indirection char-
acteristic of self-similarity results in similar patterns in the
GSS images, although the original images appear very dif-
ferent. The spirit of self-similarity is that images are similar
if the way patterns repeat within them is similar and not be-
cause they have similar colors or textures.

To fully exploit self-similarity we propose to consider it
globally rather than locally. One drawback of GSS is that
it is very expensive to compute if done directly (sec. 3.1).
We first review existing works using (local) self-similarity
(sec. 2), and how it is applied for object classification and
detection. Then, we analyze GSS (sec. 3) and propose
a computationally efficient method to obtain it (sec. 3.2),
and to store it using very little memory. Next, we propose
two descriptors based on GSS: bag-of-correlation-surfaces
(sec. 4.1) and self-similarity hypercubes (sec. 4.2). To the
best of our knowledge, we are the first to propose a GSS de-
scriptor. Finally, we show how to use self-similarity hyper-
cubes efficiently for object detection in the sliding-window
framework (sec. 5.1) and in the branch-and-bound frame-
work [17] (sec. 5.2). We analyze the computationally com-
plexity of all descriptors and algorithms we present.

In sections 6 and 7 we experimentally evaluate sev-
eral variants of our GSS descriptors and compare them to
LSS for classification and for detection. Moreover, for
classification we combine GSS and LSS descriptors with
conventional cues such as histograms of oriented gradi-
ents (HOG) [8], GIST [22], and bag-of-visual-words [25].
The experiments reveal that: (i) GSS outperforms LSS;
(ii) our efficient variants of GSS outperform the direct
one, in addition to being computationally much more ef-
ficient; (iii) self-similarity descriptors are truly comple-
mentary to conventional descriptors, as their combina-
tion perform better than either alone. The notation used

Fig. 2: Local self-similarity descriptors. The correlation surfaces
of four patches tp are computed and quantized using a log-polar
grid.

throughout this paper is summarized in tab. 1. Source
code for the global self-similarity descriptors is available
at http://www.vision.ee.ethz.ch/˜calvin.

2. Local Self-Similarity (LSS)
LSS as proposed by Shechtman et al. [23] captures self-
similarities within relatively small (40×40 pixel) regions
(sec. 2.1). LSS has been used for object recognition and
detection as yet another local descriptor in bag-of-visual-
words frameworks [6, 14, 18, 27] (sec. 2.3) or in nearest-
neighbor classifiers [5].

Junejo et al. [15] perform human action recognition in
video using temporal self-similarities. They exploit that
periodic motion (such as walking) results in periodic pat-
terns easy to detect from temporal self-similarity. The self-
similarity is computed from the distance of tracked local
features and other cues such as HOG.

Another idea related to self-similarity is symmetry. Stark
et al. [26] proposed a shape-based model for object recog-
nition. To train it from very few samples they propose to
transfer knowledge from known classes. They report that
local symmetries are good features to transfer.

2.1. Original Local Self-similarity Descriptor [23]
The LSS descriptorLp for pixel pmeasures the similarity of
a small patch tp around it with the larger surrounding region
Rp [23] (fig. 2). It is computed as follows:
(1) Determine theN×N correlation surface Cp of thew×w
patch tp with the surrounding N × N region Rp. Both Rp
and tp are centered on p. Cp(x) is the correlation of tp with
a patch tx centered on x:

Cp(x) = exp
(
−SSD(tp, tx)

σ

)
(1)

(2) Discretize the correlation surface Cp on a log-polar grid
and store the maximal value of Cp within each grid bin:

Lp(ρ, d) = max
x∈BIN(ρ,d)

{Cp(x)} (2)

Tab. 1: Notation used throughout this paper.
symbol description symbol description
p pixel Cp correlation surface for p
tp w × w patch around p M prototype assignment map
Rp N ×N region around p B BOCS descriptor
I image H D1×D2×D1×D2 SSH
Lp LSS descriptor of pixel p Θ codebook of k patch pro-

totypes θ
S exact GSS tensor Λ codebook of correlation
S̃ approximate GSS tensor surface prototypes λ

Typically a few hundred Lp are extracted either at interest
points or at position on a regular grid.

Shechtman and Irani [23] use these descriptors with an
ensemble matching method [4] for recognition and retrieval.

2.2. Efficient Convolution using the FFT.
The cost to compute the LSS descriptor for pixel p is dom-
inated by the computation of the correlation surface Cp.
This takes N2w2 operations, as tp must be correlated to
N2 patches tx. Although not mentioned in [23], an easy
speedup is to compute convolutions using the Fast Fourier
Transform (FFT), resulting in 3N2 logN2 +N2 operations
(N2 logN2 is the cost of one FFT; we have to perform
three: FFT of Rp and tp, and inverse FFT of the result. N2

is the cost for pixelwise multiplication in the spectral do-
main). However here the speedup is marginal, as N > w.

2.3. Bag of local self-similarities (BOLSS)
Ensemble matching [4] allows to use the LSS descriptors
for object detection and retrieval [23] but it cannot easily
be integrated into existing frameworks and is computation-
ally expensive. Most other object recognition frameworks
require descriptors for an image, rather than a pixel. To use
LSS descriptors in their own frameworks, various authors
have used the bag-of-visual-words (BOW) approach leading
to bag-of-local-self-similarities (BOLSS) [6, 14, 18, 27].

In the BOW approach [25, 28] an image is described as
a collection of regions. Each region is described by its lo-
cal appearance and the spatial relations between regions are
ignored.

The region appearance space is vector quantized into a
codebook of visual words, and the set of region descriptors
for an image is represented as a histogram over visual words
(one bin per word). For object categorization, typically 500-
2000 words are used.

To create the BOLSS of an image, we follow [27]: (1)
extract Lp on a regular 5×5 pixel grid (with N = 40, w =
5, 3 radial bins for d and 10 angular bins for ρ) 1; (2) assign
each Lp to one of the 300 visual words in the codebook.

This representation can easily be used in various classi-
fiers such as support vector machines (SVMs) and it can be
used for detection using sliding-windows [27] or efficient
subwindow search (ESS) [17].

Given the visual word codebook, the effort to create the
BOLSS for an H × W image is to extract H/5 × W/5
descriptors and assigning them to visual words. This results
inH/5·W/5·3N2 logN2+N2 operations for the extraction
and H/5 ·W/5 · 3 · 10 · k operations for the assignment.

3. Global Self-Similarity Tensor SI (GSS)
In the following we describe the GSS tensor SI for an im-
age I , which can be computed by directly extending LSS
(sec. 3.1). We also propose an efficient approximation to
GSS which is much faster to compute and uses far less

1we use the code from http://www.robots.ox.ac.uk/˜vgg/software/Self-
Similarity/

Image I

Codebook Θ

convolution

Corr. surf. Cθ

eq.(5)

Proto. assign.MI GSS tensor S̃I

Fig. 3: Computing the prototype assignment map MI . The
image is convolved with prototypes θ ∈ Θ; for each pixel p the
prototype θ with maximal correlation is chosen (eq. (5)). The GSS
tensor S̃I is obtained fromMI using lookups.

memory (sec. 3.2). The GSS tensor extracted in this section
forms the basis for GSS descriptors for object classification
(sec. 4) and detection (sec. 5).

3.1. Direct global self-similarity
To compute the GSS tensor SI for image I , we correlate tp
for each pixel p ∈ I with the entire H ×W image resulting
in H×W different correlation surfaces Cp (as in eq. (1) but
with Rp = I). SI is a 4D tensor collecting the Cp’s

SI(p, p′) = Cp(p′) ∀p, p′ ∈ I (3)

For every pair of pixels p = (x, y) and p′ = (x′, y′),
SI(p, p′) is the correlation of a w × w patch tp centered
on p with patch tp′ centered on p′. For a symmetric patch
similarity measure (like SSD) SI(p, p′) = SI(p′, p). How-
ever, any measure can be used.

The size of SI is quadratic in the size of the input image
I: H × W × H × W . Thus, SI is very large even for a
moderately sized image.

To compute SI we correlate the w × w patch tp cen-
tered on p with the entire image for every pixel p. Doing
this directly requires H2W 2w2 operations. Using the FFT
(sec. 2.2) would result in speedups of factor 2-20 (depend-
ing on the choice of w and the image size). Example corre-
lation surfaces Cp for four pixels are shown in fig. 1.

Note that the LSS descriptor can also be represented
within this tensor, bringing a unified view on self-similarity.

3.2. Efficient Global Self-Similarity
In this section we present an efficient method to approxi-
mate the computation of SI and show how the resulting S̃I
can be stored in a fraction of the memory.

To create S̃I we quantize the patches tp according to a
codebook Θ of prototype patches θ (sec. 3.3). Then, we
define that two patches tp and tp′ are similar if they are as-
signed to the same prototype θ. This is a valid assumption
since similarity is transitive: if two patches tp and tp′ are
both similar to a prototype θ, then they are also similar to
each other (tp ' θ ∧ tp′ ' θ ⇒ tp ' tp′). Further as-
suming that patches are only similar if they are assigned to
the same prototype θ (tp ' θ ∧ tp′ ' θ ⇔ tp ' tp′) ef-
fectively quantizes the correlation surfaces Cp to binary. In
most cases, this is a good approximation due to the expo-
nential in the similarity measure (eq. (1)), analogously to
maximum approximation in exponential models [2].

im
ag

es
I

Θ
D

C
T

Θ
D

B
Θ

I

Fig. 4: Patch prototype codebooks. From top to bottom: three
images; the first prototypes from the generic DCT codebook; some
prototypes out of 2000 in a codebook created from 20 images;
some prototypes out of 100 in each image-specific codebook.

Given a codebook Θ of prototypes θ we compute which
pixels p are assigned to which patch prototype θ, leading to
k = |Θ| binary correlation surfaces Cθ. Since each pixel is
assigned to exactly one θ, the Cθ’s are disjoint and can be
stored in a single H ×W prototype assignment map MI

(fig. 3). The GSS tensor S̃I is derived fromMI using sim-
ple lookups as

S̃I(p, p′) = δ(MI(p) =MI(p′)) (4)

where δ(x) is the Kronecker delta: δ(x) = 1 iff x is true,
δ(x) = 0 otherwise.
MI has several advantages over the direct SI : (i) it

can be stored in a fraction of the memory (HW instead of
H2W 2); (ii) it can be computed in a fraction of the time (see
below); (iii) it leads to better classification accuracy (sec. 6).

When computing MI , accuracy is traded for speed.
With a larger codebook Θ computation is slower but the re-
sulting prototype assignment map is more finely quantized.
Finally, note that although our prototype assignment maps
MI are similar to texton-maps used in patch-based object
classification methods [24], the resulting descriptors dif-
fer profoundly as they encode similarities between regions
within an image rather than their actual appearance.

Efficient Computation of MI . Given an image I and a
patch prototype codebook Θ with k = |Θ| prototypes θ, we
need to correlate each θ with the entire image resulting in k
correlation surfaces Cθ and requiring kHWw2 operations,
if done directly.MI is obtained from the Cθ’s as

MI(p) = arg max
θ∈Θ
{Cθ(p)} (5)

Compared to direct GSS (sec. 3.1), the speedup brought by
our method is factor HW/k. Additionally, FFT could also
be used here leading to further speedups as for direct GSS.

3.3. Patch Prototype Codebooks Θ
We propose three variants (fig. 4) of patch prototype code-
books suited to computeMI :

Generic prototypes ΘDCT. The discrete cosine transform
(DCT) is a standard technique in signal processing aiming at
representing signals as a linear combinations of basis func-

tions [1]. By discarding some of the coefficients, signals can
be compressed. The DCT can be computed very efficiently.

Here, we choose Θ to be a subset of the basis functions
of a DCT forw×w prototypes (i.e. we discard the DC com-
ponent and high frequencies). We apply the DCT for each
color-channel independently and determine the prototype
θDCT
p with the highest response for each pixel p. MI(p)

is the composition of the prototypes of the three channels.
The prototypes θ ∈ ΘDCT can immediately be applied to
any image. With specialized DCT implementations, MI

can be computed in 3HWw2 logw2 operations: for each
pixel p and color channel, the DCT of a patch is computed.
Fig. 4 shows the first few prototypes in a DCT codebook.

Dataset-specific prototypes ΘDB. Here we learn patch
prototypes specific to an image dataset. As in the creation
of codebooks for object classification [16, 21], we create
dataset-specific prototypes θ ∈ ΘDB by randomly sampling
patches from the images and then quantizing them into k
prototypes θ with k-means. ΘDB is computed once before-
hand and does not have to be taken into account to compute
MI . Here, the choice of k trades representation accuracy
for speed. For large variations in the image set, a large k
is necessary for a good representation. Fig. 4 show several
prototypes from a dataset-specific codebook. They exhibit
a wide variety of colors and patterns.

Image-specific prototypes ΘI . The GSS tensors S̃I do not
contain the codebooks Θ. Following the philosophy of self-
similarity, and as opposed to the BOW framework, S̃I only
encodes whether two pixels in an image are assigned to the
same prototype θ, but not to which prototype. As a con-
sequence, we can use a different codebook for each image,
enabling image-specific patch prototypes θ ∈ ΘI .

To create ΘI specific to image I , we proceed analo-
gously as when creating ΘDB. Instead of jointly cluster-
ing randomly sampled patches from a set of images, we
only sample patches from I and cluster them independently
of other images. Since variation within a single image is
smaller than within a set of images, |ΘI | << |ΘDB| allows
for comparable representation quality. To create a prototype
assignment mapMI now we have to perform two steps:

(1) Creation of the codebook ΘI : cluster n randomly sam-
pled patches from I to form k prototypes. This requires k
distance computations per patch in each of the L k-means
iterations, giving a total of w2nkL operations.

(2) Compute patch-assignment mapsMI : assign the most
similar prototype θ ∈ θI to each pixel (eq. (5)). As k =
|ΘI | < |ΘDB|, the number of convolutions is lower than
when using ΘDB.

Fig. 4-bottom shows several prototypes from ΘI ’s cor-
responding to the images in fig. 4-top. Compared to
the dataset-specific prototypes in the same figure, ΘI are
clearly better suited to represent their respective images.

SI(p, ·)→ Cp BI

Λ

eq. (6)

Fig. 5: Bag of Correlation Surfaces. Correlation surfaces Cp =
SI(p, ·) are vector-quantized according to the correlation surface
codebook Λ and counted (eq. (6)) to obtain BI .

4. Descriptors based on global self-similarity
While the previous section describes methods to efficiently
and compactly capture the GSS tensor SI , it does not pro-
vide means of using these for recognizing and detecting ob-
jects. SI is a 4D tensor depending on the size of the im-
age I . It cannot be used directly as most machine learning
frameworks require fixed-size descriptors.

In the following we propose two fixed-size global image
descriptors based on the GSS tensor. They can be obtained
either from the direct GSS tensor SI or from the approxi-
mate S̃I . To ease notation we always write SI below.

4.1. Bag of Correlation Surfaces BI (BOCS)
A bag-of-correlation-surfaces (BOCS) descriptor is based
on the same principles as BOW descriptors: we vector
quantize the correlation surfaces Cp from an image I and
represent them as a histogram.

Let SI(p, ·) = Cp be the correlation surface for pixel
p. We learn a correlation surface codebook Λ from a set of
images by scaling their correlation surfaces Cp to a common
size (m×m) and clustering to k prototypes λ ∈ Λ.

Given Λ, the BOCS BI is derived from SI by (1) assign-
ing each correlation surface to its most similar prototype λ,
and (2) counting how many surfaces are assigned to each
prototype (fig. 5):

BI(λ) =
∑
p∈I

δ

(
λ = arg min

λ′∈Λ
{SSD(λ′,SI(p, ·))}

)
(6)

In a BOCS, the ordering of the Cp’s is lost. However, the
individual Cp’s still convey spatial structure, as each is the
correlation surface for a pixel.

The computational complexity to obtain BI from SI is
HW |Λ|m2: each of the H ×W correlation surfaces Cp is
compared to each of the prototypes λ ∈ Λ.

4.2. Self-similarity Hypercubes HI (SSH)
Self-similarity hypercubes (SSH) aim at preserving the en-
tire spatial structure of the GSS tensor SI , while (i) making
it easier to handle by reducing its size to (ii) a fixed size that
can be processed in standard machine-learning frameworks,
and (iii) enabling the efficient extraction of SSH for many
windows in an image (sec. 5).

An SSHHI is a 4D tensor of size (D1×D2×D1×D2)
and can be considered as SI scaled down to a fixed size.
To obtain HI , a regular D1 × D2 grid is projected onto
the image. HI(J, J ′) describes how similar two grid cells

MI HI

Fig. 6: Self-similarity hypercubes. Constructing a 24 SSH HI

from a 4x4 prototype assignment mapMI according to eq. (8).

J = (i, j) and J ′ = (k, l) are.

HI(J, J ′) =
∑
p∈J

∑
p′∈J′

SI(p, p′) (7)

where the summations run over all pixels p inside J , and p′
inside J ′.

If SI is represented by a prototype assignment mapMI ,
we can compute the SSH descriptor directly from it, without
forming SI and therefore saving memory (fig. 6). In this
case, we count how many pixels in J were assigned to the
same template as pixels in J ′:

HI(J, J ′) =
∑
p∈J

∑
p′∈J′

δ(MI(p) =MI(p′)) (8)

Computing SSH require H2W 2 operations in both cases.

5. Efficient Extraction of SSHs for Detection
Many recent object localization schemes are based on
sliding-windows: localization is reduced to subsequently
evaluating a classifier for many (possibly all) windows in
the image. The score of the classifier indicates whether
the object is present in the window. Since even moder-
ately sized images already contain an enormous number of
windows, only very efficient methods can be applied in this
framework.

Lampert et al. [17] presented a method based on branch-
and-bound, called efficient-subwindow search (ESS), which
enables to efficiently search all possible windows in an im-
age I , for certain classifiers. In the following we show how
to efficiently compute SSH descriptors HI′ for an arbitrary
window I ′ ∈ I (sec. 5.1) and how this can also be used for
branch-and-bound search, analogously to ESS (sec. 5.2).

5.1. Efficient Extraction of SSHs from subwindows
For sliding-window detection we need to efficiently extract
SSHsHI′ for arbitrary windows I ′ in an image I . A simple
way to extract HI′ for one window I ′ from the GSS tensor
SI is to crop it to cover only I ′ and then computeHI′ from
it using (7), which requires (H ′ ·W ′)2 operations (where
H ′ ×W ′ is the size of I ′).

When extracting HI′ for many windows, a significant
speedup can be achieved using an integral self-similarity
SΣ
I , built analogously to integral images [7] in 4D:

SΣ
I (pxy, p′x′y′) =

x∑
i=1

y∑
j=1

x′∑
k=1

y′∑
l=1

SI(pij , pkl) (9)

This structure can be built linearly (4H2W 2) in the size
(H × W)2 of SI . Then, computing HI′ for an arbitrary

window I ′ takes D2
1 · D2

2 · 16 lookups. For each of the
D2

1 ·D2
2 entries ofHI′ corresponding to grid cells J and J ′,

16 lookups are necessary to compute the sum over the cor-
responding part of SI . Thus, the cost to compute HI′ for a
window I ′ now is 16(D1 ·D2)2, compared to (H ′ ·W ′)2 be-
fore. As typicallyD1, D2 are around 10 andH ′,W ′ around
100, the cost is reduced by about 100 times.

For classification we use a linear SVM. The correspond-
ing score function is

f(HI′) = β +
∑
J,J ′

θ(J, J ′)HI′(J, J ′) (10)

where β is the bias and θ is the SVM hyperplane (formatted
to the dimensionality of HI′). Computing f(HI′) requires
D2

1 ·D2
2 operations.

5.2. Efficient Subwindow Search on SSHs
To apply branch-and-bound techniques such as ESS [17] we
need to define an upper-bound on the score of a (contigu-
ous) set of windows R. This upper-bound must deliver the
score of I ′ ifR only contains a single window I ′. Rewriting
eq. (10) as

f(HI′)=β+
∑

(J,J ′):θ(J,J ′)>0

θ(J, J ′)HI′(J, J ′) +
∑

(J,J ′):θ(J,J ′)<0

θ(J, J ′)HI′(J, J ′)

enables formulating an upper-boundU(f,R)≥max
I′∈R

f(HI′):

U(f,R)=β+
∑

(J,J ′):θ(J,J ′)>0

θ(J, J ′)H+
R(J, J ′) +

∑
(J,J ′):θ(J,J ′)<0

θ(J, J ′)H−R(J, J ′)

where H+
R(J, J ′) is an upper-bound on HI′(J, J ′) for all

I ′ ∈ R:

H+
R(J, J ′) ≥ max

I′∈R
HI′(J, J ′)

and analogously for the lower-boundH−R(J, J ′):

H−R(J, J ′) ≤ min
I′∈R

HI′(J, J ′)

We obtain H+
R(J, J ′) and H−R(J, J ′) from SΣ

I . Analog
to [17], H+

R(J, J ′) is the sum over the part of SI corre-
sponding to the union of all possible grid cells J, J ′ in R.
H−R(J, J ′) is defined analogously, but over the intersection
of those cells.

6. Experimental Evaluation: Classification
We evaluate the classification performance on object subim-
ages cropped out of the Pascal VOC 2007 dataset [9] (Pas-
cal07 from now on) according to their annotation bounding-
box. We use all objects that are not marked as truncated or
difficult. For training we also discard objects with unspeci-
fied viewpoint resulting in a total of 9608 object subimages
(training on 1688+1653 from the train+val Pascal07 sets,
testing on 6267 of test).

In secs 6.1 to 6.4 we experiment on a subset consisting
of 629 subimages from six classes (airplane, boat, bus, mo-
torbike, sheep, train), each restricted to one viewpoint. We
use this subset to (a) set the parameters of all methods; (b)

100 200 500 1000 2000
20

30

40

50

60

70

|Λ| = 1000

|Λ| = 2000

100 200 300 400 500
20

30

40

50

60

70

|Λ| = 200

|Λ| = 500

|Λ| = 1000

|Λ| = 2000

(a) (b)

← |ΘDB | → ← |ΘI | →

Fig. 7: Classification accuracy [%] vs. size of the patch prototype
codebook (a) ΘDB (b) ΘI using BOCS with correlation surface
codebooks Λ of different sizes and linear SVMs for classification.

evaluate BOCS and SSH alone (secs. 6.1, 6.2); (c) com-
pare them to LSS and direct GSS (sec. 6.3); (d) combine
the SS descriptors with conventional descriptors (sec. 6.4).
In sec. 6.5 we confirm our findings by evaluating the best
working setups on the full Pascal07 set (9608 subimages).

6.1. Bag of correlation surfaces BI
A BOCS can be computed from a direct GSS tensor SI
or from an approximate GSS tensor S̃I (using any of
ΘDCT,ΘDB,ΘI). First we determine the parameters to ex-
tract GSS tensors, then those of BOCS.

Direct GSS tensor SI . To obtain SI , the patch similarity
measure and the size of the patchesw have to be chosen. We
compared sum of squared distances (SSD) and normalized
cross-correlation (NCC) and found SSD to perform better.
It seems that the additional brightness invariance of NCC is
not necessary within one image and only hurts discrimina-
tive power. We found the descriptors to be quite robust w.r.t.
the patch-size w. In all experiment we set w as 1/20 of the
image size.

Efficient GSS tensor S̃I . For each codebook type, the
patch-size w and the number |Θ| of prototypes θ ∈ Θ have
to be determined:
Generic codebooks ΘDCT. We evaluated |ΘDCT| = 53 and
103 (5 and 10 prototypes per color channel) and found the
larger codebooks to perform slightly better.
Dataset-specific codebooks ΘDB. Fig. 7(a) shows classifi-
cation accuracy vs. |ΘDB| for two different BOCS. The ac-
curacy saturates at about |ΘDB| = 2000 regardless of the
size of Λ. We expect larger Θ to be preferable for larger
datasets (sec. 3.3).
Image-specific codebooks ΘI . Fig. 7(b) shows classification
accuracy vs. |ΘI | for different BOCS. The best results are
obtained at |ΘI | ≈ 400 regardless of the size of Λ

Parameters of BOCS (|Λ|, m). Fig. 8 shows the impact
of the size of the correlation surface codebooks Λ on the
classification accuracy for (a) m = 10 and (b) m = 20 for
the different GSS tensors. The approximate GSS tensors S̃I
outperform the direct SI . S̃I obtained with image-specific
patch prototypes ΘI performs best, followed by dataset-
specific ΘDB. Small correlation surfaces (m = 10, fig. 8(a))
perform better than large (m = 20, fig. 8(b)). Using an
intersection kernel (IK) SVM instead of a linear one, the
accuracy is consistently improved (dashed vertical lines).

100 200 500 1000 2000 5000
20

30

40

50

60

70

direct

DCT

FSS

IW

100 200 500 1000 2000 5000
20

30

40

50

60

70

(a) m = 10 (b) m = 20

← |Λ| → ← |Λ| →

Fig. 8: Classification accuracy [%] of BOCS descriptors vs. size
of the correlation surface codebook Λ using the different types of
GSS tensors. Size m of the correlation surfaces (a) 10 (b) 20.
Dashed vertical lines show the improvements using IK SVMs.

Tab. 2: Classification accu-
racy [%] for SSH with D1 =
D2 = 10.

SVM

GSS tensor linear IK

direct 45.7 36.5
ΘDB 49.3 60.9
θ500I 52.6 67.8

10 20 30 40 50
66

67

68

69

70

71

72

73

D
1
=10 D

1
=20 D

1
=30 D

1
=40

← D2 →

Fig. 9: Classification accuracy
[%] vs.D2 for SSH with different
D1 (using IK SVMs).

6.2. Self-similarity Hypercubes HI
SSHs MI can also be obtained from the four variants of
the GSS tensor SI and S̃I . For the GSS tensor we use
the parameters that worked best for BOCS, and investi-
gate here the impact of the sizes D1, D2 of SSH on clas-
sification accuracy. Tab. 2 compares the performance for
SSHs (D1 = D2 = 10) for the different types of GSS ten-
sors. Again, the image-specific codebooks perform best,
followed by the dataset-specific codebooks. Also here, us-
ing an IK SVM brings a significant boost of accuracy. Fig. 9
shows the impact of the size (D1, D2) of SSH on the clas-
sification accuracy (using ΘI with |ΘI | = 400). Clearly
D1 = D2 = 20 performs best, leading to a 204 = 160 000
dimensional descriptor.

Normalization of SSH. The SSH HI(J, ·) roughly corre-
sponds to downscaled correlation surfaces and can be inter-
preted as an (unnormalized) histograms of how many pixels
in the respective other grid cells J ′ are similar (i.e. assigned
to the same patch prototype) as pixels in a cell J . Applying
histogram normalization to each of these D1 ×D2 correla-
tion surfaces increases classification accuracy from 72.7%
to 76.0%. (using ΘI , |ΘI | = 500 and D1 = D2 = 20).

6.3. Comparison to LSS and GSS
The column “alone” in tab. 3 shows classification accu-
racy for the different self-similarity descriptors used alone.
SSH performs best, BOCS comes second. Both clearly
outperform BOLSS. For both SSH and BOCS, image-wise
codebooks perform best, database-wise second best. For
SSH it is important to have sufficiently large descriptors
(D1 = D2 = 20). Normalizing SSH visibly raises classifi-
cation accuracy. These results confirm that self-similarity is

Tab. 3: Classification accuracy [%] on the Pascal07 subset using
conventional descriptors, LSS, GSS, and combinations of these.

alone BOW HOG GIST

GSS descriptor lin. IK lin. IK lin. IK lin. IK

none – – 66.8 67.4 70.4 74.0 78.6 81.9

BOLSS 61.2 63.4 73.4 71.7 70.4 74.0 79.6 84.5

BOCS with |Λ| = 2000,m = 10

direct SI 34.5 43.4 61.5 68.1 69.4 75.0 71.7 83.2
S̃I with ΘDB 57.6 62.5 68.8 72.4 70.4 75.0 79.0 84.5
S̃I with ΘI 64.5 67.1 74.3 76.0 73.7 77.0 75.7 84.5

SSH D1, D2

S̃I with ΘDB 10 49.3 60.9 67.8 73.7 70.4 76.6 77.0 82.9
20 52.0 60.2 68.1 74.0 70.4 74.0 78.6 82.9

S̃I with ΘI 10 52.6 67.8 70.1 74.0 70.4 77.0 78.3 82.9
20 58.9 72.7 69.7 77.0 70.4 77.3 79.3 84.2

+norm. 20 79.0 76.0 78.0 81.3 79.9 79.9 84.2 85.5

more powerful as a global rather than as a local descriptor.

6.4. Combination with conventional descriptors
To investigate the GSS descriptors further, we combine
them with several conventional descriptors:
GIST [22] is based on localized histograms of gradient ori-
entations. It captures the rough spatial arrangement of im-
age structures, and has been shown to work well for describ-
ing the overall appearance of an image.
Bag of visual words (BOW) are standard for many recog-
nition tasks [3, 13, 14, 16–18, 25, 28]. We use SURF de-
scriptors [3, 17] and quantize them into 2000 words with
k-means. A window is described by a BOW of SURF.
Histograms of oriented gradients (HOG) also are an es-
tablished descriptor for object class recognition [8, 10].

Tab. 3 shows classification accuracy for the conventional
descriptors alone (row “none”) and combined with LSS,
BOCS, and SSH. For combination we train a separate SVM
for each descriptor and combine their scores in a weighted
sum. The weight is determined on the validation set.

While all self-similarity descriptors raise the accuracy
in combination with conventional cues, SSH achieves the
largest improvement. These results demonstrate that GSS
descriptors are truly complementary to conventional de-
scriptors.

6.5. Full Pascal07 dataset
To confirm our findings, we evaluate the best GSS descrip-
tor (SSH with D1 = D2 = 20, ΘI , |ΘI | = 500, normal-
ized) and BOLSS on the full Pascal07 set. We train a sepa-
rate classifier per viewpoint (left, right, front, back) For test-
ing, we use all objects in the test set (including those with
unspecified viewpoint) and measure average classification
accuracy over the 20 classes (i.e. no need to predict view-
point). As tab. 4 shows, SSH clearly outperforms BOLSS.
In combination with GIST, both BOLSS and SSH improve
over GIST alone, but SSH moderately outperforms BOLSS.
These results reinforce the findings from before: (a) GSS
performs better than LSS, (b) self-similarity is complemen-
tary to conventional descriptors.

Tab. 4: Classification accuracy [%] on the full Pascal07 set using
GSS, LSS and combinations of with GIST.

alone GIST

descriptor linear IKSVM linear IKSVM

BOLSS 25.0 31.9 52.9 57.5
SSH 44.0 45.7 55.1 59.4

6.6. Runtimes for computing descriptors
Computing the GSS tensor of a 200x200 pixels image using
our efficient method of sec. 3.2 with an image-specific code-
book of 200 patch prototypes takes 81s. Instead, extracting
the GSS tensor directly would take 5512s (sec. 3.1). De-
riving the BOCS and SSH descriptors from the GSS tensor
takes a negligible time. So, our methods bring about a 70-
fold speedup. For reference, computing a GIST descriptor
takes 0.4s and BOLSS 0.7s.

7. Experimental Evaluation: Detection
For detection, we compare the performance of BOLSS and
SSH on the ETHZ Shape Classes dataset [12] (ETHZ-SC
from now on). This dataset contains a total of 255 images
from five classes (apple logos, bottles, giraffes, mugs, and
swans). We follow the setup of [11, 20] and train one de-
tector per class using the first half of the positive training
images and the same number of negative training images
(in equal shares taken from all other classes). We consider a
detection correct if the detection window intersection-over-
union with the ground-truth window is > 0.5 (Pascal crite-
rion).

Training. We train detectors for BOLSS and SSH using a
training algorithm inspired by [10]:
(1) Initialization: Extract descriptors from annotated
bounding-boxes of positive training images and five random
bounding-boxes per negative training image to train an ini-
tial linear SVM. Also compute the average aspect-ratio of
the ground-truth bounding-boxes.
(2) Apply the detector in sliding-window mode (step-size
16 with fixed aspect ratio) on each training image and then
run greedy non-maxima suppression [10]. All wrong detec-
tions (according to the Pascal criterion) from all images are
collected as hard negative samples.
(3) Retrain the SVM by adding those hard negative samples.
(4) Repeat steps (2)-(3) 40 times (or until convergence).

Detection. As in [11, 20], the test set for a class consists of
all ETHZ-SC images not used to train that class (including
images of other classes). To detect multiple objects per im-
age, we use a sliding-window detector, as the branch-and-
bound framework does not easily support this [17, 19]2.

Fig. 10 and tab. 5 show detection performance for SSH
(|ΘI | = 500, D1 = D2 = 20) and BOLSS. Performance
is measured in terms of detection rate and the average rate
of false-positives per image (FPPI). Overall, SSH greatly

2We evaluated ESS and found it to be about 30x faster than sliding
windows when searching the same space of windows.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

apple logos bottles giraffes mugs swans

Fig. 10: Detection rate vs. FPPI
on ETHZ-SC for SSH (solid)
and BOLSS (dashed).

Tab. 5: Det. rate at (a) FPPI=0.3
(b) FPPI=0.4 on ETHZ-SC using
BOLSS and SSH.

BOLSS SSH

category (a) (b) (a) (b)

apple logos 10.0 10.0 80.0 80.0
bottles 10.7 10.7 96.4 96.4
giraffes 17.0 23.4 83.0 85.1
mugs 6.5 6.5 64.5 67.7
swans 17.6 17.6 70.6 70.6

average 12.4 13.6 78.9 80.0

outperforms BOLSS. The large gap in detection perfor-
mance can be explained by three reasons: (i) Linear SVMs
on BOW features are known to localize the object in im-
ages containing it [17], but are not powerful enough to
discriminate false positives from images not containing it.
Therefore, more powerful discriminative models such as IK
SVMs are necessary [27]. (ii) Spatial arrangements are im-
portant to recognize classes from the ETHZ-SC dataset, but
BOLSS largely discards them. (iii) The dimensionality of
the descriptor (160 000 for SSH vs. 300 for BOLSS) plays
an important role in training linear SVMs. Since here the
number of negative training samples is huge, this gives an
additional advantage to the SSH descriptor.

Note how there are recent methods performing even bet-
ter than SSH on this dataset, e.g. [20] on average obtains
a detection rate of 91.9%/93.2% at FPPI 0.3/0.4 using a
discriminative max-margin Hough transformation. How-
ever, our aim is not to outperform the state-of-the-art but to
demonstrate that (i) it is possible to use GSS for detection
efficiently and (ii) GSS performs better than LSS.

Runtimes for detection. Computing the GSS tensor for
an entire image takes about 80s. It is done only once and
reused for all classes. After this, detecting one class using
SSH with D1 = D2 = 20 takes approximately 4min. With
D1 = D2 = 10, this speeds up to 30s with only a minor
loss of performance (avg. 78.0/79.4 instead of 78.9/80.0).
For comparison, computing direct GSS separately for the
same number of windows in an image (about 25000) would
take about 4 years. So, our methods made object detection
with GSS descriptors possible.

8. Conclusion
We explored GSS, discussed its advantages over LSS, pro-
pose descriptors based on it, and shown how to use them for
classification and detection. In detail, (a) we proposed an
efficient method to extract GSS from images; (b) we devel-
oped efficient image descriptors based on GSS. These cap-
ture self-similarities and their spatial arrangement within an
entire image, as opposed to previous local self-similarity
descriptors; (c) we have shown how to use these descriptors
efficiently for detection in the sliding-window framework
and in the branch-and-bound framework; (d) we experi-
mentally demonstrated on Pascal VOC 2007 and on ETHZ
Shape Classes dataset that our GSS descriptors outperform

LSS for both classification and detection, and that they are
complementary to conventional descriptors such as BOW,
HOG, and GIST.
Thanks to Christoph Lampert for helpful hints on ESS and
to SNSF for supporting this research.

References
[1] N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine transform.

IEEE Trans. Computers, pages 90–93, 1974.
[2] O. Barndorff-Nielsen and P. Jupp. Approximating exponential mod-

els. Annals of the Inst. of Stat. Math., 41(2):247–267, 1988.
[3] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. SURF: Speeded up

robust features. CVIU, 110(3):346–359, 2008.
[4] O. Boiman and M. Irani. Detecting irregularities in images and in

video. IJCV, 74(1):17–31, 2007.
[5] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-

neighbor based image classification. In CVPR, 2008.
[6] K. Chatfield, J. Philbin, and A. Zisserman. Efficient retrieval of

deformable shape classes using local self-similarities. In NORDIA
Workshop at ICCV 2009, 2009.

[7] F. Crow. Summed-area tables for texture mapping. In SIGGRAPH,
1984.

[8] N. Dalal and B. Triggs. Histogram of Oriented Gradients for Human
Detection. In CVPR, 2005.

[9] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2007.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part based models.
PAMI, 2009. in press.

[11] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent
contour segments for object detection. PAMI, 30(1):36–51, 2008.

[12] V. Ferrari, T. Tuytelaars, and L. van Gool. Object detection by con-
tour segment networks. In ECCV, 2006.

[13] P. V. Gehler and S. Nowozin. On feature combination for multiclass
object classification. In ICCV, 2009.

[14] E. Hörster and R. Lienhart. Deep networks for image retrieval on
large-scale databases. In ACM Multimedia, 2008.

[15] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez. Cross-view action
recognition from temporal self-similarities. In ECCV, 2008.

[16] F. Jurie and B. Triggs. Creating efficient codebooks for visual recog-
nition. In ICCV, 2005.

[17] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwin-
dow search: A branch and bound framework for object localization.
PAMI, 2009. in press.

[18] C. H. Lampert, H. Nickisch, S. Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In CVPR, 2009.

[19] A. Lehmann, B. Leibe, and L. van Gool. Feature-centric efficient
subwindow search. In ICCV, 2009.

[20] S. Maji and J. Malik. Object detection using a max-margin hough
tranform. In CVPR, 2009.

[21] F. Moosman, B. Triggs, and F. Jurie. Fast discriminative visual code-
book using randomized clustering forests. In NIPS, 2006.

[22] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic
representation of the spatial envelope. IJCV, 42(3):145–175, 2001.

[23] E. Shechtman and M. Irani. Matching local self-similarities across
images and videos. In CVPR, 2007.

[24] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for im-
age understanding: Multi-class object recognition and segmentation
by jointly modeling appearance, shape and context. IJCV, 81(1):2–
23, 2009.

[25] J. Sivic and A. Zisserman. Video Google: A text retrieval approach
to object matching in videos. In ICCV, 2003.

[26] M. Stark, M. Goesele, and B. Schiele. A shape-based object class
model for knowledge transfer. In ICCV, 2009.

[27] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple ker-
nels for object detection. In ICCV, 2009.

[28] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local fea-
tures and kernels for classification of texture and object categories: a
comprehensive study. IJCV, 73(2):213–238, 2007.

