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Abstract— The synthesis of many textures can be simplified if they are
first decomposed into simpler subtextures. Such bootstrap procedure al-
lows to first consider a ‘label texture’, that captures the layout of the sub-
textures, after which the subtextures can be filled in. A companion paper
focuses on this latter aspect. This paper describes an approach to arrive
at the label texture. Pairwise pixel similarities are computed by match-
ing simple color and texture features histograms in pixel neighbourhoods,
using efficient mean-shift search. A graph-based, unsupervised algorithm
segments the image into subtextures, based on the similarities.

Keywords—segmentation, composite textures, texture synthesis

I. INTRODUCTION

Many textures are so complex that for their analysis and syn-
thesis they can better be considered a composition of simpler
subtextures. A good case in point are landscape textures. Open
pastures can be mixed with patches of forest and rock. The di-
rect synthesis of the overall texture would defy existing meth-
ods. The whole only appears to be one texture at a very coarse
scale. In terms of intensity, colors, and simple filter outputs such
scene can not be considered ‘homogeneous’. The homogeneity
rather exists in terms of the regularity (in a structural or stochas-
tic sense) in the layout of simpler subtextures.

Texture can be thought of as a regular layout of simpler struc-
tures, which themselves can be considered in such way. This
process of decomposition can end at the point where the re-
maining subtextures are homogeneous in terms of very simple
features, like color or simple filter outputs. This recursive defi-
nition suggests a hierarchical texture modeling scheme. This pa-
per discusses an approach to analyze one layer of this hierarchy,
directly above the level where the subtextures can be discovered
on the basis of simple features. An unsupervised segmentation
scheme is proposed, that decomposes a texture into such subtex-
tures.

Section II discusses the simple texture features that we use,
and how they are compared to group pixels into the different
subtextures. Section III describes the clique partitioning method
that lies at the heart of this grouping process. Section IV shows
some segmentation results. Section V concludes the paper.

II. PIXEL SIMILARITY SCORES

For the description of the subtextures, both color and struc-
tural information is taken into account. Local statistics of the�����
	��
���

color coordinates and the wavelet detail coefficients���������
���
(horizontal, vertical and diagonal) are derived. We used

a Haar-wavelet, but another wavelet family or filterbank could
be used to optimize the system.

The initial
�����
	��
���

-color and
���������
���

-structural feature vec-
tor of an image pixel � are both referred to as ��� . The local
statistics of the vectors ��� near the pixel � are captured by a lo-
cal histogram ��� .
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Fig. 1. (top left) patches with identical texture and different illumination. (bot-
tom left) traditional intensity histograms of the paches. (right) weighted his-
tograms of the patches.

A. Weighted Feature histograms.

To avoid problems with sparse high-dimensional histograms,
we first quantize the feature space, in the same vein as the texton
analysis in [7]. The bin centers are obtained by hierarchically
clustering the vectors � � until a fixed number of bins is reached
(we chose 8) or an error is exceeded.

Instead of assigning a pixel to a single bin, each pixel is as-
signed a vector of weights that express its affinity to the different
bins (textons). The weights are based on the euclidean distances
to the bin centers. If

� �"!$#&%�����')(�*+% is the distance between a
feature value � � and the , -th bin center, we compute the corre-
sponding weight as

- �"!$#/.10 2"3
45 6�7
8
9:4
; (1)

The resulting local weighted histogram ��� of pixel � is obtained
by averaging the weights over a region <=� :

��� � , � # >? <@� ?BAC�D1E 5
- C ! (2)

In our experiments, <F� was chosen a circular region, with a ra-
dius of G pixels.

The resulting weighted histogram can be considered a smooth
version of the traditional histogram. The weighting causes small
changes in the feature vectors (e.g. due to non-uniform illumi-
nation) to result in small changes in the histogram. In tradi-
tional histograms this is often not the case as pixels may sud-
denly jump to another bin. Figure 1 illustrates this by computing
histograms of two rectangular patches from a single Brodatz tex-
ture. The patches have similar texture, only the illumination is
different. Clearly the weighted histograms (right) are less sensi-
tive to this difference. This is reflected in a higher Bhattacharyya
score (3).

Color and structural histograms are computed separately. In
a final stage, the color and structure histograms are simply con-
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Fig. 2. (left) normal comparison between two pixels, the dashed lines indi-
cate the supports ��� and �	� of the histograms. (right) comparison with shifts,
avoiding problems near texture borders.

catenated into a single, longer histogram and the �+� � , � are scaled
to ensure that 
 ! ��� � , � # >

.
In order to compare the feature histograms, we have used the

Bhattacharyya coefficient � . Its definition for two frequency his-
tograms � # � �
� ������� � �	� � and �=# � ��� ��������� ��� � is

� � � � � � # A �
� ������� � (3)

This coefficient is proven to be more robust [8] in the case of
zero count bins and non-uniform variance than the chi-squared
statistic. In fact, after a few manipulations one can show the
following relation:

� � � � � ��� > ' >
G A �

� � �+' ��� � 8��� # > ' >
G
� 8 � � � � � (4)

Another advantage of the Bhattacharyya coefficient over the � 8 -measure is that it is symmetric, which is more natural when sim-
ilarity has to be expressed.

B. Shifted Matching.

In order to evaluate the similarity between two pixels, their
feature histograms are not simply compared. Rather, the com-
parison of the histogram for the first pixel is made with those of
all pixels in a neighbourhood of the second. The best possible
score is taken as the similarity ��� � � ����� between the two pixels.
This allows the system to assess similarity without having to
collect histograms from large regions <F� . The advantage is that
boundaries between subtextures are better located, as is shown
in figure 2.

The search for the location with the best matching histogram
close to the second pixel is based on the mean shift gradient to
maximize the Bhattacharyya measure [6]. This avoids having
to perform an exhaustive search. Comparisons are in fact also
carried out over a number of different scales. This is to cater
for perspective effects and the like that may exist within a single
subtexture. A final refinement is by defining a symmetric simi-
larity measure � : � � � ����� #�� � �1� � � #��! #"�$#� � � � ������� � � � �1� � �&% .

As shifted matches cause neighbouring pixels to have an exact
match, the similarity scores are only computed for a subsample
(a regular grid) of the image pixels, which also yields a com-
putational advantage. Yet, after segmentation of this sample, a
high-resolution segmentation map is obtained as follows. The
histogram of each pixel is first compared to each entry in the
list of neighbouring sample histograms (at true scale only). The
pixel is then assigned to the best matching class in the list.

Our particular segmentation algorithm requires a calibrated
similarity matrix � with entries ')( indicating that pixels are
likely to belong together and entries *+( indicating the oppo-
site. The absolute value of the entry is a measure of confidence.
So far, all the similarities � have positive values. We subtract a
constant value, which in all our experiments was kept the same.
With this fixed value images with different numbers of subtex-
tures could be segmented successfully. Hence, the number of
subtextures was not given to the system, as would e.g. be re-
quired in , -means clustering. Having this threshold in the sys-
tem can be an advantage, as it allows the user to express what
he or she considers to be perceptually similar.

III. PIXEL GROUPING

A. Clique partitioning

In order to achieve the intended, unsupervised segmentation
of the composite textures into simpler subtextures, pixels need
to be grouped into disjoint classes, based on their pairwise simi-
larity scores. Taken on their own, these similarities are too noisy
to yield robust results. Pixels belonging to the same subtexture
may e.g. have a negative score (false negative) and pixels of
different subtextures may have positive scores (false positives).
Nevertheless, taken altogether, the similarity scores carry quite
reliable information about the correct grouping. The transitivity
of subtexture membership is crucial: if pixels �+� � � C are in the
same class and � C � ��! too, then ��� � � C and ��! must belong to the
same class. Even if one of the pairs gets a falsely negative score,
the two others can override a decision to split. Next, we formu-
late the texture segmentation problem so as to exploit transitiv-
ity to detect and avoid false scores. We present a time-optimised
adaptation of the grouping algorithm we first introduced in [9].
We construct a complete graph , where each vertex represents a
pixel and where edges are weighted with the pairwise similarity
scores. We partition , into completely connected disjoint sub-
sets of vertices (cliques) so as to maximize the total score on the
remaining edges (Clique Partitioning, or CP). The transitivity
property is ensured by the clique constraint: every two vertices
in a clique are connected, and no two vertices from different
cliques are connected. The CP formulation of texture segmen-
tation is made possible by the presence of positive and nega-
tive weights: they naturally lead to the definition of a best so-
lution without the need of knowing the number of cliques (sub-
textures) or the introduction of artificial stopping criteria as in
other graph-based approaches based on strictly positive weights
[3], [1]. On the other hand, our approach needs the parameter -/.
that determines the splitting point between positive and negative
scores. But, as our experiments have shown, the same parameter
value yields good results for a wide range of images. Moreover,
the same value yields good results for examples with a variable
number of subtextures. This is much better than having to spec-
ify this number, as would e.g. be necessary in a , -means clus-
tering approach.

CP can be solved by Linear Programming [2] (LP). Let - � C
be the weight of the edge connecting

� � ����� , and 0+� C21 $�( � > %
indicate whether the edge exists in the solution. The following
LP can be established:



maximize 
 � � ��� C � � - � C 0�� C
subject to 0�� C�� 0 C !@' 0��"!�� > ��� > � � * � * ,	��
0�� C ' 0 C ! � 0��"!�� > ��� > � � * � * ,	��
' 0�� C�� 0 C ! � 0��"!�� > ��� > � � * � * ,	�

0�� C 1 $�( � > % ��� > � ��* � * ,	�



(5)
The inequalities express the transitivity constraints, while the
objective function to be maximized corresponds to the sum of
the intra-clique edges.

B. A fast approximation

Unfortunately CP is an NP-hard problem [2]: LP (5) has
worst case exponential complexity in the number 
 of vertices
(pixels), making it impractical for large 
 . The challenge is to
find a practical way out of this complexity trap. The correct
partitioning of the example in figure 3 is $ $ > ��� % � $�� ��� ��� % % . A
simple greedy strategy merging two vertices

� � ����� if - � C�� (
fails because it merges

� > � � � as its first move. Such an approach
suffers from two problems: the generated solution depends on
the order by which vertices are processed and it looks only at
local information.

We propose the following iterative heuristic. The algorithm
starts with the partition

� # $ $ � % % � � � � �
composed of 
 singleton cliques each containing a different ver-
tex. The function

� ��� � ��� 8 � # A� D����� ! D�� 4
" � !

defines the cost of merging cliques #�� � # 8 . We consider the func-
tions $ ��� � # �! #"&% D(' � ��� �*)��+ ��� � #  �,�-��! #"/. D(' � ��� �*)��
representing, respectively, the score of the best merging choice
for clique # and the associated clique to merge with. We merge
cliques #�� � # C if and only if the three following conditions are
met simultaneously

+ ��� � � # � ! � + ��� ! � # � � � $ ��� � � # $ ��� ! � � ( �
In other words, two cliques are merged only if each one rep-
resents the best merging option for the other and if merging
them increases the total score. At each iteration the functions$ ��� ��� + ��� �

are computed, and all pairs of cliques fulfilling the
criteria are merged. The algorithm iterates until no two cliques
can be merged. At each iteration, the function � can be pro-
gressively computed from its values in the previous iteration.
The basic observation is that for any pair of merged cliques # !=#
#��102# C , the function changes to � ���43����65 � # � ���63���� � � � � ���63���� ! �
for all #87:91 $;#�� � # C % . This strongly reduces the amount of opera-
tions needed to compute � and makes the algorithm much faster
than in [9].

Fig. 3 shows an interesting case. In the first iteration $ > % is
merged with $ � % and $ � % with $ � % . Notice how $�� % is, cor-
rectly, not merged with $ > % even though < � $ > % � $�� %:� # � � ( .
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Fig. 3. An example graph and two iterations of our heuristic. Not displayed
edges have zero weight.

In the second iteration $�� % is correctly merged with $ � ��� % ,
resisting the (false) attraction of $ > ��� % (

�:� $ > ��� % � $�� %:� # >
,��� $ > ��� %:� # $�� % ). The algorithm terminates after the third it-

eration because < � $ > ��� % � $�� ��� ��� %:� # ' � * ( . The second
iteration shows the power of CP. Vertex � is connected to unre-
liable edges ( - � 8 is false positive, - 8�= is false negative). Given
vertices $ > � � ��� % only, it is not possible to derive the correct par-
titioning $ $ > ��� % � $�� % % ; but, as we add vertices $ � ��� % , the global
information increases and CP arrives at the correct partitioning.

The proposed heuristic is order independent, takes a more
global view than a direct greedy strategy, and resolves several
ambiguous situations while maintaining polynomial complex-
ity. Analysis reveals that the exact amount of operations de-
pends on the structure of the data, but it is at most

� 
 8 in the
average case. Moreover, the operations are simple: only com-
parisons and sums of real values (no multiplication or division
is involved).

In the first iterations, being biased toward very positive
weights, the algorithm risks to take wrong merging decisions.
Nevertheless our merging criterion ensures this risk to quickly
diminish with the size of the cliques in the correct solution
(number of pixels forming each subtexture) and at each itera-
tion, as the cliques grow and increase their resistance against
spurious weights.

C. Performance of the approximation

The practical shortcut for the implementation of CP may raise
some questions as to its performance. In particular, how much
noise on the edge weights (i.e. uncertainty on the similarity
scores) can it withstand? And, how well does the heuristic ap-
proximation approach the true solution of CP? We tested both

Vert. Cliques Diff % Err % LP Err % Approx
15 3 0.53 6.8 6.93
12 2 0.5 2.92 3.08
21 3 0.05 2.19 2.14
24 3 0.2 1.13 1.33

TABLE I

Comparison of LP and our approximation. The noise level is 25%. Diff % is

the average percentual difference between the partitionings produced by the

two algorithms. The two Err columns report the average percentage

misclassified vertices for each algorithm.

LP and the heuristic on random instances of the CP problem.
Graphs with a priori known, correct partitioning were gener-
ated. Their sizes differed in that both the number of cliques
and the total number of vertices (all cliques had the same size)



Vertices Cliques Noise level Err % Approx
40 4 25 0.33
60 4 25 0.1
60 4 33 2.1

120 5 36 1.6
1000 10 40 0.7

TABLE II

Performance of the CP approximation algorithm on various problem sizes.

were varied. Intra-clique weights were uniformly distributed in� ' 	������ with
	

real number, while inter-clique weights were uni-
formly distributed in

� ' � �
	�� , yielding an ill-signed edge per-
centage of �

���
	
. This noise level could be controlled by varying

the parameter
	
. Let the difference between two partitionings be

the minimum amount of vertices that should change their clique
membership in one partitioning to get the other. The quality
of the produced partitionings is evaluated in terms of average
percentage of misclassified vertices: the difference between the
produced partitioning and the correct one, averaged over 100 in-
stances and divided by the total number of vertices in a single
instance.

Table II reports the performance of our approximation for
larger problem sizes. Given 25% noise level, the average er-
ror already becomes negligible with clique sizes between 10
and 20 (less than 0.5%). In problems of this size, or larger,
the algorithm can withstand even higher noise levels, still pro-
ducing high quality solutions. In the case of 1000 vertices and
10 cliques, even with 40% noise level (

	 #�� ), the algorithm
produces solutions which are closer than 1% to the correct one.
This case is of particular interest as its size is similar to the typ-
ical texture segmentation problems. Table I shows a compari-
son between our approximation to CP and the optimal solution
computed by LP on various problem sizes, with constant noise
level set to 25% (

	 # �
). In all cases the partitionings produced

by the two algorithms are virtually identical: the average per-
centual difference is very small as shown in the third column of
the table. Due to the very high computationals demands posed
by LP, the largest problem reported here has only 24 vertices.
Beyond that point, computation times run into the hours, which
we consider as too impractical. Note that the average percentage
of misclassifications quickly drop with the size of the cliques.

The proposed heuristic is fast: it completed these problems in
less than 0.1 seconds, except for the 1000 vertices one, which
took about 4 seconds on the average. The ability to deal with
thousands of vertices is particularly important in our application,
as every pixel to be clustered will correspond to a vertex.

Fig. 4 shows the average error for a problem with 100 vertices
and 5 cliques as a function of the noise level (

	
varies from 3

to 5.5). Although the error grows faster than linearly, and the
problem has relatively small size, the algorithm produces high
quality solutions in situations with as much as 36% of noise.

These encouraging results show CP’s robustness to noise and
support our heuristic as a good approximation. Cliques in
these experiments were only given the same size to simplify
the discussion. The algorithm itself deals with differently sized
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Fig. 4. Relationship between noise level and error, for a 100 vertices, 5 cliques
problem. The average percentage of misclassified vertices (X-axis) is still low
with as much as 36% noise level.

cliques.

IV. EXPERIMENTAL RESULTS

Performance of the algorithm was tested on both compos-
ite textures and textured landscapes. Figure 5 shows a tex-
ture collage. The image was processed in three ways. In
(a) we applied histogram matching without allowing “shifted”
matches (i.e. a similarity match for pair

� � ����� is simply� � ��� � � C � ). (c) shows the segmentation using mean shift to
achieve an optimal match, which clearly solves the problems
at boundaries between subtextures. Segmentation (d) was com-
puted with the normalized cuts algorithm [3], available at
http://www.cs.berkeley.edu along with a standard

set of parameters. Figures 6 and 8 show results of our algorithm
on some textures and landscapes. Finally figure 7 shows a full
synthesis obtained from its segmentation map. For more details,
we refer to the paper “Parallel Composite Texture Synthesis”,
elsewhere in the proceedings.

V. CONCLUSIONS

The paper described the segmentation part of a method that
synthesizes textures by first segmenting them into simpler sub-
textures. An effective method, based on a very time-efficient
approximation of clique partitioning, was proposed. This builds
on robust color and structure related similarity scores. Future
work will include texture hierarchies of more than two levels.
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(a) (b)

(c) (d)

Fig. 5. (a) original image (texture collage) and segmentations obtained (b) with
CP and no shifted matching. (c) using CP and shifted matching (mean shift
optimization) and (d) using Normalized Cuts.

Fig. 6. Segmentation of composite textures using our algorithm (CP and shifted
matching).

Fig. 7. Original image and synthesis. The synthesis was obtained by separately
synthesizing the subtextures from the labelmap in figure 6 (bottom left).

Fig. 8. Landscape segmentations (CP and shifted matching)


