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Abstract

We present a new method for matching line segments be-
tween two uncalibrated wide-baseline images. Most cur-
rent techniques for wide-baseline matching are based on
viewpoint invariant regions. Those methods work well with
highly textured scenes, but fail with poorly textured ones.
We show that such scenes can be successfully matched us-
ing line segments. Moreover, since line segments and re-
gions provide complementary information, their combined
matching allows to deal with a broader range of scenes. We
generate an initial set of line segment correspondences, and
then iteratively increase their number by adding matches
consistent with the topological structure of the current ones.
Finally, a coplanar grouping stage allows to estimate the
fundamental matrix even from line segments only.

1. Introduction

In the last few years, various approaches for wide-
baseline stereo matching have been proposed [1, 4, 9, 10,
17]. Most of them use local, viewpoint invariant regions.
These regions are extracted independently from each im-
age, characterized by a viewpoint invariant descriptor, and
finally matched. Those methods are robust to large view-
point and scale changes. However, the number of produced
matches depends on the amount of visible distinctive texture
contained in both views. Images of poorly textured scenes
provide only a few matches, and sometimes none at all.

The class of scenes addressed in this paper are typically
man-made environments with homogeneous surfaces, like
blank walls in architectural interiors. Despite lacking tex-
ture, these scenes often contain line segments which can be
used as additional features. Line segments convey an im-
portant amount of geometrical and topological information
about the constitution of the scene, whereas regions cap-
ture the details of its local appearance. Using both types
of features allows to exploit their complementary informa-
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tion, making wide-baseline stereo matching more reliable
and generally applicable.

We propose a novel matcher for straight line segments,
based on their appearance and their topological layout. It is
capable of reliably finding correspondences among line seg-
ments between two views taken from substantially different
viewpoints. It works in a completely uncalibrated setting,
and hence does not assume epipolar geometry to be known
beforehand. Moreover, we show the benefits of matching
line segmentsand regions in a combined fashion. Finally,
we propose a technique to obtain epipolar geometry from a
mixture of line segments and region matches, and even from
line segment correspondences alone.

Line segment matching is a challenging task. One of
the reasons is that we cannot directly exploit the epipolar
geometry as a global geometric constraint. Moreover, line
segments have little distinctive appearance, and the location
of the endpoints is often inaccurate.

Until now, only a few methods for automatic line seg-
ment matching for wide-baseline stereo exist. Schmid and
Zisserman [14] perform guided line matching using a plane
sweep algorithm. However, their approach requires the
prior knowledge of the epipolar geometry. Lourakis et
al. [6] use the ’2 lines + 2 points’ projective invariant for
images of planar surfaces, and therefore their method is lim-
ited to such scenes. Several other approaches restricted to
small baseline cases have been proposed (e.g. [13]).

Our approach exploits the appearance similarity of pairs
of line segments, and the topological relations between all
line segments. If region matches are available, they are au-
tomatically integrated in the topological configuration, and
exploited in combination.

The scheme is composed of six stages:

1. A viewpoint-invariant region matcher is applied in
order to get a set of initial region matches. We use the
one proposed by [17]. This first stage is optional: our
scheme can work also without region matches.

2. The line segments are extractedusing the Canny
edge detector [2]. Edges are split at points with high



curvature. Line segments are then fitted to the split
edges using orthogonal regression.

3. Color histogram based matchingis performed in or-
der to get initial candidate matches. The line segments
in both views are compared based on the histograms of
the neighboring color profiles (section 2).

4. A topological filter is applied to remove wrong can-
didate matches. The filter can work with line segment
matches alone, or with a mixture of line segment and
region matches (section 3).

5. More matchesare found by iteratively reintroducing
unmatched line segments which respect the topologi-
cal structure of the current set of matches (section 4).
This novel mechanism can substantially increase the
number of correct matches.

6. Theepipolar geometry is estimated after an interme-
diate step of coplanar grouping using homographies
(section 5). The intersections of every set of po-
tentially coplanar line segments are treated as point
matches, and used to estimate the fundamental matrix.
If available, region matches contribute to the estima-
tion too.

2. Appearance-based matching

This section describes our strategy for obtaining an ini-
tial set of candidate matches based on the appearance simi-
larity of the line segments (or ’segments’, for short).

Because of the unknown motion range and epipolar ge-
ometry, segments cannot be compared using the classic
correlation windows or corrected correlation patches [14].
However, if a segment lies on the intersection of two planes
or at the border between two differently colored areas, then
the color neighborhood on both sides of the segment un-
dergoes only slight changes, even if the camera motion is
important.

Figure 1.The lines are directed so that the darker neighborhood
is on the right side. The color profiles are separated by 3 pixels.

Let ΨR andΨL be the color profiles along the right and
along the left side of a directed segment. The direction of
the segment is determined by the mean intensity along the

profiles: the brighter profile is set to be on the left (figure 1).
This simple criteria allows to determine the direction con-
sistently over both views for the vast majority of cases.

The color profiles are computed along two stripes paral-
lel to the segment, one on either side. The separation be-
tween those stripes has to be as small as possible, but not
smaller than the standard deviation of the Gaussian filter
used for the Canny edge detection (we have to avoid that
they contain the edge segment itself). We chose the dis-
tance of 3 pixels (see figure 1) in all our experiments. The
color intensity values for the profiles are computed using
fast B-Spline interpolation as proposed by Unser et al. [18].

A direct comparison of the profiles is not possible be-
cause of the inaccurate localization of the endpoints along
the segment, and the projective distortion of the profiles.
Therefore, we use two color histograms ofΨR andΨL as
descriptor of a line segment, as they are more robust to these
factors (although not invariant either). We define a color
histogramh of a profileΨR|L as the vector[h1, ... , hM ] in
which each binhm contains the number of pixels ofΨR|L

having a certain colorm, normalized by the lengthN of the
segment.

hm =
1

N

NX
i=1

¡
1 if ΨR|L(i) = m
0 otherwise

(1)

Color histograms considering all possible colors are
very big, which would make the computational time for
the matching stage tremendously high. Furthermore,
they are sensitive to illumination changes as well as
to noise. Thus, we reduce the number of colors, by
applying a color space quantization using a predefined
palette of colors. LetC be a color space andP =
{c1, c2, ... , ci, ... , cn | ci ∈ C, n ¿‖ C ‖} the quantiza-
tion space. The quantizerQ is the function that maps every
color inC to an element, also called bin, inP .

Q : C → P

The choice of the quantization space is crucial for the
quality of the candidate matches. We chose the approach
proposed by Smith and Chang [16] who partitioned the
HSV color space into 166 bins, placing more importance
on the Hue channel (H) than on Saturation (S) and Value
(V). The Hue channel is the most useful, and is invariant
to changes in illumination intensity. However, in order to
distinguish between grayish looking colors, which are fre-
quent in man-made environments, the Saturation and Value
channel should also be used to some extent. Therefore, we
divide the channels into 18 bins for Hue, 3 for Saturation,
and 3 for Value. Additionally, four grey levels including
black and white are defined. This choice of the quantiza-
tion space brings some degree of invariance to brightness
changes, without losing the important information of grey
levels.



The segments are matched by measuring the similarity
of their profile histograms, independently for each side.
There are various histogram similarity measures with dif-
ferent properties (e.g. Minkowski, Kulback-Leibler, Earth
Mover’s Distance). When using color similarity measures
within the histogram dissimilarity computation, a quadratic
metric is suitable. In [12], such a metric is proposed; it
considers Euclidean distances between colors and is much
faster to compute than the Earth Mover’s distance. This is
an important issue, because we have to calculate hundreds
of histogram similarities for every segment.

The distance between histogramsh1 andh2 is given by

d1,2 = (h1 − h2)>A(h1 − h2) (2)

whereA = [ai,j ] is a166 × 166 matrix, and its elements
ai,j denote the Euclidean distance between the binsci and
cj of the paletteP in the color spaceC. In our caseC is the
conical representation of the HSV color space. Therefore,
the distanceai,j between two colorspi = [hi, si, vi] and
pj = [hj , sj , vj ], in the quantized HSV color space is

ai,j =
1√
2

ą
(visi cos(hi)− vjsj cos(hj))

2 + (3)

(visi sin(hi)− vjsj sin(hj))
2 + (vi − vj)

2
ť

1/2

The dissimilarity of two segments is expressed by the
square root of the mean of the histogram dissimilarities for
both sides.

For the matching, the segments in the first imageI1 are
compared to all segments in the second imageI2. A seg-
ment ofI2 is considered as a candidate match for a segment
of I1 if their dissimilarity is below0.25. Notice that a seg-
ment can have more than one candidate match, therefore we
call themsoft matches. When there are many of them, only
the 3 with the lowest dissimilarity are kept.

The reasons for choosing soft matches instead of the
classic 1-to-1 approach are manifold. First of all, segments
tend to be only weakly distinctive in their appearance, thus
several non-corresponding segments tend to resemble each
other. Secondly, important changes in the viewing condi-
tions may result in a loss of similarity of the correct match
(scale changes, specularities, background changes, etc.). Fi-
nally, real scenes often contain repeated or visually simi-
lar elements. Keeping more than just the most similar seg-
ment significantly reduces the chances of missing the cor-
rect match.

3. Topological filter

This section describes a mismatch filter based on the
semi-local spatial arrangement of the features (segments
and regions) in two views. This is an extension of the topo-
logical filter proposed by Ferrari et al. [3], who used similar
techniques only with region triplets. Instead, our filter can

handle sets of matches containing only segments, or both
segments and regions at the same time. This filtering stage
substantially reduces the number of mismatches, which are
produced by the initial matching stage as a consequence of
the weak appearance distinctiveness of segments.

3.1. Sidedness Constraint

The filter is based on two forms of thesidedness con-
straint, each used in one of two successive stages (figure 2).

The first form states that for a triplet of feature matches,
the center of a featurem1

v should lie on the same side of
the directed linelv going from the centerm2

v of the second
feature to the centerm3

v of the third feature, in both views
v ∈ {1, 2}:

side(l1, m1
1) = side(l2, m1

2). (4)
with

side(lv, m1
v) = sign

(
lvm1

v

)
= sign

((
m2

v ×m3
v

)
m1

v

)
(5)

This constraint holds always if the three features are copla-
nar, and in the vast majority of cases if they are not [3]. The
filter is designed to favor features which respect the con-
straint often, while tolerating modest amounts of violations.

In the first stage of the filter, the constraint is tested for
all feature triplets (see next subsection). Regions and line
segments are used here in a homogeneous manner, as they
both contribute with their centers. The center of a segment
is defined as its midpoint.

The second stage of the filter uses another form of the
sidedness constraint. For apair of feature matches, the first
being a line segment, the center of the second feature must
be on the same side of the (directed) line segment in both
views. Notice that we previously assigned a direction to
each line segment (section 2), so it directly takes up the role
of lv as in the first form of the constraint. This second stage
takes advantage of the fact that a line segment suffice to de-
fine a directed line, so the constraint can be verified already
for pairs, rather than triplets. Moreover, this second stage
uses the whole information provided by the segment.

3.2. Algorithm

A feature triplet or pair including a mismatch is more
likely to violate the sidedness constraint. When this hap-
pens, it does not tell yetwhichfeature is a mismatch. There-
fore, for every feature we compute a violation score which
counts the number of violated constraints for all unordered
triplets/pairs including it. A mismatched feature is typically
involved in more violations than a correctly matched one,
thus a match with a high violation score has a higher chance
to be incorrect.

The filter algorithm is similar for both stages, which are
applied one after the other. Given a set ofN feature matches
mi

v between viewsv ∈ {1, 2}, with S the number of seg-
ment matches, do:



Figure 2.Top: a triplet of features (two segments, with midpoints
’o’, and a region center, marked with a square).m1 lies on the
same side of the directed linel in both views. Bottom: a pair of
segments, where one takes the role of the directed linel.

1. For every feature match(mi
1, mi

2), test all sidedness
constraints in which it is involved.

2. For each feature, we define aviolation scoreVi by
counting the number of violated constraints, divided
by the total number in which it is involved. This total
number depends on the current stage of the filter. For
the triplet stage this is(N − 1)(N − 2)/2. For the
pair stage, there are three cases:N − 1 when the fea-
ture is a line-segment and plays the role of the directed
line lv, or S when the feature is a region, orS − 1
when it is a line-segment playing the second role in
the pair. This latter distinction in necessary because of
the two different roles a line-segment plays in the sec-
ond stage of the filter: it can provide the directed line,
or the center-point whose sidedness is tested.

3. Find the feature match with the highest violation score
Vmax. If Vmax > 0.15, this match is considered incor-
rect and removed, then the algorithm re-iterates from
step 1. IfVmax ≤ 0.15, or if all matches have been
removed, the algorithm terminates.

After applying the topological filter, there might still be
some soft matches left. For further processing, we keep for
each feature only the single match with the lowest sum of
appearance dissimilarity and topological violation score.

3.3. Motivation

It is important to point out the reasons behind our choice
for this filtering stage. First of all, we cannot compute

the fundamental matrix directly from segment correspon-
dences, and therefore cannot exploit the epipolar constraint
as a filter (as opposed to what is done in the region matching
literature, e.g. [9, 10, 17]). The topological filter instead can
effectively use the information within the segment matches
to discriminate between correct and incorrect ones.

The second main reason lies in the fact that the pro-
posed filter is insensitive to the exact localization of the fea-
tures, because the number of violated sidedness constraints
varies slowly and smoothly for a feature departing from its
ideal location. This is particularly important in our context,
where the midpoint of a segment is often inaccurately lo-
calized, because the endpoints are not precisely determined
along the segment’s direction. Moreover, since the perspec-
tive projection of the midpoint of a segment in 3D space is
not congruent with the midpoint of the projected segment,
the midpoints of two long matched segments can sometimes
represent only an approximative point correspondence.

4. Finding more matches

While Ferrari et al. [3] use the sidedness constraint only
to filter mismatches, we exploit it also for adding matches.

During the topological filtering, some correct matches
are erroneously rejected. Additionally, there might be cor-
rect correspondences which have been missed by the ini-
tial matcher, because of their high similarity with other seg-
ments. Thanks to the novel technique presented in this sec-
tion, such matches can be found and added to the current
set. We apply this to find more segment matches, but it can
easily be extended to regions.

The algorithm is iterative and starts from the set of
matches after applying the topological filter. At each iter-
ation, new line segment matches are added if they respect
the topological structure of the current set (i.e. if they have
a low violation score). In the next iteration, the updated
matches set serves as reference to calculate the violation
scores of potential new matches.

1. For every unmatched segment inI1, calculate the vi-
olation score of each possible candidate match inI2,
computed with respect to the current configuration of
matches. As in section 2, we consider as possible can-
didates all segments with an appearance dissimilarity
below 0.25. It is advantageous to consider also seg-
ments ofI2 which are already matched, because an-
other segment may have a lower violation score. The
three candidate matches with the lowest violation score
are stored in a waiting room.

2. All segments in the waiting room are added to the cur-
rent set of matches

3. The two stages of the topological filter are applied on
this extended set of matches. The matches which are



rejected are left out of any further consideration. In the
case that some segments still have more than one can-
didate match, these are eliminated by keeping only the
one with the lowest sum of appearance dissimilarity
and topological violation score.

4. If the current configuration is the same as in the begin-
ning of this iteration, the algorithm terminates, other-
wise it iterates to point 1.

Figure 3.Candidate matches within the highlighted zone of the
bottom image violate no sidedness constraints for the point in the
top image.

This method typically substantially increases the number
of correct matches.

5. Epipolar geometry estimation
This section presents a new scheme for estimating

the epipolar geometry from segment matches. If region
matches are available, their information is also included.

As we cannot directly estimate the epipolar geometry
from line correspondences, we go through an intermediate
coplanar grouping stage. We assume that the scene con-
tains at least two planes. The idea of our method is to group
coplanar segments using homographies. We then compute
the intersection points of all pairs of segments within a
group, and treat them as point correspondences. This pro-
vides many matches which are likely to be correct, and
do not depend on the accuracy of the estimated homogra-
phy. Moreover, these intersection points are exact corre-
spondences, in contrast to the midpoints used in the previ-
ous sections. We finally estimate the fundamental matrix
from these point matches using standard RANSAC [5].

The advantage of our method is that we use homogra-
phies only for grouping potentially coplanar segments, and
not for directly estimating the epipolar geometry as de-
scribed in [15]. Estimating the epipolar geometry directly
from homographies has been shown to be less stable than
the estimation from point correspondences [8]. Moreover,
our strategy uses the whole information provided by all
line segments within a group, rather than just what is ex-
pressed by the homography matrix. This brings robust-
ness: even when some group accidentally contains a few
non-coplanar, or mismatched segments, only a minority of
incorrect point correspondences are generated, and the sub-
sequent RANSAC stage can then proceed successfully.

5.1. Homography estimation

Figure 4.Left: four non-coplanar segment matches (thick). Right:
their projection via the homographyH estimated from the corre-
spondence among their support lines (thin). The segments are not
in correspondence with their projection, but they ’slide’ along the
support lines instead.

Groups of coplanar segments and the associated homo-
graphies are computed by the following algorithm:

1. We repeat points 2 and 3 forK subsetsΩ of four ran-
domly selected segments. The number of subsets is
calculated adaptively as described in [5]

2. A homographyH is fit to the support lines of the seg-
ments ofΩ, using SVD. In order to check whether the
segments ofΩ are really coplanar, we project the asso-
ciated profilesΨR|L

1 from the first image to the sec-
ond by H, and compare them by normalized cross-
correlation (NCC). More precisely, we require that the
NCC between each profile and its projection in the
other image is above 0.5. The test is applied sym-
metrically, by projecting the profiles from the second
image to the first byH−1. This test proved very effec-
tive in rejecting non-coplanar quadruplets of segments
(figure 4). If noΩ fulfilling this test is found withinK
trials, the algorithm stops.

3. Now that a valid quadruplet is found, we try to include
more segments in the group. The symmetric trans-
fer distancedtransfer is computed for every segment



Figure 5.Corridor scene. Top: 41 segment matches, including 6 mismatches (marked ’*’). The two coplanar groups are marked ’A’ and
’B’. Bottom: estimated epipolar geometry.

match(m1,m2)

d2
transfer =max

ą
d⊥(ms

1,H−1l2)2, d⊥(me
1,H−1l2)2

ć
+

max
ą
d⊥(ms

2,Hl1)2, d⊥(me
2,Hl1)2

ć
, (6)

wherelv is the support line of the segment in view
v, andms

v, me
v are the endpoints.d⊥ is the distance

between a point and a line.

All matches withdtransfer < 5 pixels, which also pass
the NCC test above, are put in a coplanar group.

4. After K trials, we select the group with the largest
number of segments. In case of ties, we prefer the
group with the lowest sum of symmetric transfer dis-
tances. The segments of the selected group are re-
moved from the current set of matches, and the whole
algorithm is repeated in order to find the next group of
coplanar segments.

The algorithm is repeated until the stopping condition in
step 2 is met. In practice, the procedure returns only a few
groups (rarely more than 4), because non-coplanar quadru-
plets are likely to be rejected during step 2. Figure 5 shows
an example grouping.

5.2. Fundamental Matrix estimation

After producing groups of coplanar segments, we now
estimate the fundamental matrix. For each group, we com-
pute the intersection points of all pairs of segments within it,
therefore producing point correspondences. All correspon-
dences arising from all groups are put in the sameestima-
tion set. If available, the center of region correspondences

are also added to this set. Finally, the Fundamental Matrix
is estimated from all the point matches in the estimation set
using the standard RANSAC algorithm [5]. Figure 5 shows
an example where the fundamental matrix has been success-
fully computed based on line segments only.

6. Results and Conclusion

We report results on 3 example scenes, imaged under
wide-baseline conditions. All experiments have been made
with the same parameters. The average computation time
for the matcher was 8 seconds on a modest workstation
(Pentium 4 at 1.6GHz, line detection not included).

The first scene depicts the corner of a corridor, and has
almost no texture (figure 5 top). Trying to match regions
with the approach of [17] fails, as only 6 matches are found,
out of which just 3 are correct. Our approach instead, using
line segments only, finds 21 matches (16 correct) already
before the stage of adding more matches (section 4). After
the latter was performed, the number increases to 41 (35
correct), showing how this stage can substantially boost the
number of correct matches, while keeping the number of
mismatches low. Based on these 41 segment matches, the
algorithm we proposed in section 5 successfully estimates
the epipolar geometry (figure 5 bottom).

Figure 6 presents another textureless scene, consisting
of a corner of an office room’s ceiling. Beside the view-
point change, an additional challenge is posed by the strong
in-plane camera rotation. Our method, with only line seg-
ments, produces 24 correspondences (21 correct) spread
over the whole images, and determines the fundamental ma-



Figure 6.Corner scene: Top: 21 correct matched segments, and 3 mismatched ones (marked ’*’). The numbers indicate a few correct
matches, to help the reader. Bottom: estimated epipolar geometry.

trix (figure 6 bottom).
Figure 7 shows the last scene. The viewpoint change can

be appreciated by looking at the deformation of the black-
board. The region matcher yields 26 matches (11 correct)
on the left wall with the blackboard, but only 3 matches (2
correct) on the cupboard doors on the right. When estimated
only from these region matches, the fundamental matrix is
only valid for the left wall (figure 7 top). By running our
method, using segmentsandregions, we obtain 50 segment
matches (37 correct, spread over both planes), and 18 region
matches (12 correct), thereby clearly reducing the number
of mismatched regions. Moreover, the method finds the cor-
rect fundamental matrix (figure 7 bottom).

For comparison, we matched all image pairs also with
three state-of-the-art invariant region detectors [7, 9, 10] and
described the regions with the SIFT descriptor [7]. The lat-
ter performed best in a recent comparative study [11]. The
matching is carried out as follows: a region of the first im-
age is matched to the region in the second image with the
closest descriptor, if it is closer than 0.6 times the distance
to the second closest descriptor1. This is a common robust
matching strategy [1, 7, 11]. As table 1 shows, MSER and
Harris-Affine find nearly no matches, while the DoG detec-
tor provides a few correct matches. Nevertheless, their num-
ber is still unsatisfactory, in contrast to the number of line
segment matches produced by our method. This shows that

1We have used the official detector implementations
http://www.robots.ox.ac.uk/ ∼vgg/research/affine/ .
The matching was performed using David Lowe’s software from
http://www.cs.ubc.ca/ ∼lowe/keypoints/ , Version 3.

Scene MSER DoG Harris-Affine
Corridor 2/2 8/14 0/2
Corner 1/1 5/10 1/1
Classroom (cupboard) 0/0 0/0 1/2
Classroom (rest) 14/14 6/8 3/3

Table 1.Results for different region detectors. MSER: Maximally
Stable Extremal Regions [9], DoG: Difference of Gaussians [7]
and Harris-Affine [10]. Entries report the number of correct
matches over the number of correct matches. Notice how there
is a relatively high number of correct matches only on the textured
blackboard.

our technique is much better suited for textureless scenes.

In conclusion, we have presented a new wide-baseline
stereo matcher capable of working with line segments
alone, or combined with affine invariant regions. It can
robustly estimate the fundamental matrix from a mixture
of both kind of correspondences, or even from segment
matches only. The experiments support the approach and
show that it can find a good number of line segment corre-
spondences also on untextured scenes, imaged under gen-
eral wide-baseline conditions, and without any prior knowl-
edge about the scene or camera positions (e.g.: in contrast
to [14]). Moreover, the system can effectively exploit the
complementary information provided by segments and re-
gions, and hence can handle a wider range of scenes than
possible with either cue alone.

One potential improvement could be to apply the stage of
adding more matches also for regions, or to extend it to take
advantage of the epipolar constraint once the fundamental



Figure 7.Classroom scene. Top: the epipolar geometry estimated from region matches is incorrect. Bottom: correct epipolar geometry,
estimated including line segments.

matrix has been computed. Moreover, the color quantizer
could be chosen based on an initial global analysis of the
color distribution in the two images. This would increase
the quality of the initial set of candidate matches.
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