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Abstract
We present a generic objectness measure, quantifying how
likely it is for an image window to contain an object of
any class. We explicitly train it to distinguish objects with
a well-defined boundary in space, such as cows and tele-
phones, from amorphous background elements, such as
grass and road. The measure combines in a Bayesian
framework several image cues measuring characteristics of
objects, such as appearing different from their surroundings
and having a closed boundary. This includes an innovative
cue measuring the closed boundary characteristic. In ex-
periments on the challenging PASCAL VOC 07 dataset, we
show this new cue to outperform a state-of-the-art saliency
measure [17], and the combined measure to perform bet-
ter than any cue alone. Finally, we show how to sample
windows from an image according to their objectness dis-
tribution and give an algorithm to employ them as location
priors for modern class-specific object detectors. In exper-
iments on PASCAL VOC 07 we show this greatly reduces
the number of windows evaluated by class-specific object
detectors.

1. Introduction
In recent years object class detection has become a ma-
jor research area. Although a variety of approaches ex-
ist [1, 4, 22], most state-of-the-art detectors follow the
sliding-window paradigm [4, 5, 10, 15, 21]. A classifier is
first trained to distinguish windows containing instances of
a given class from all other windows. The classifier is then
used to score every window in a test image. Local maxima
of the score localize instances of the class.

While object detectors are specialized for one object
class, such as cars or swans, in this paper we define and
train a measure of objectness generic over classes. It quan-
tifies how likely it is for an image window to cover an ob-
ject of any class. Objects are standalone things with a well-
defined boundary and center, such as cows, cars, and tele-
phones, as opposed to amorphous background stuff, such
as sky, grass, and road (as in the ‘things vs. stuff’ distinc-
tion of [16]). Fig. 1 illustrates the desired behavior of an
objectness measure. It should score highest windows fit-
ting an object tight (green), score lower windows covering
partly an object and partly the background (blue), and score
lowest windows containing only stuff (red).

(a) (b) (c)
Fig. 1: Desired behavior of an objectness measure. The desired
objectness measure should score the blue windows, partially cov-
ering the objects, lower than the ground truth windows (green),
and score even lower the red windows containing only stuff or
small parts of objects.

We argue that any object has at least one of three dis-
tinctive characteristics: (a) a well-defined closed boundary
in space; (b) a different appearance from their surround-
ings [23, 25]; (c) sometimes it is unique within the image
and stands out as salient [2, 13, 17, 19]. Many objects have
several of these characteristics at the same time (fig. 2-4).

This paper makes three contributions: (a) We design an
objectness measure and explicitly train it to distinguish win-
dows containing an object from background windows. This
measure combines in a Bayesian framework several image
cues based on the above characteristics. (b) We present a
new cue (sec. 2.4) and demonstrate it outperforms tradi-
tional saliency [17] for detecting objects in the challeng-
ing PASCAL VOC 07 dataset [7]. We also show that the
combined objectness measure performs better than any cue
alone. (c) We show how to use objectness as a location
prior for modern class-specific object detectors [4, 10, 32].
We demonstrate an algorithm to greatly reduce the number
of evaluated windows with only minor loss in detection per-
formance. Different from ESS [21], our method imposes no
restriction on the class model used to score a window.

In addition to speeding up detectors, the objectness mea-
sure can act as a focus of attention mechanism in other ap-
plications. It can facilitate learning new classes in a weakly
supervised scenario [6], where the location of object in-
stances is unknown [12, 34]. Similarly, it can help object
tracking in video, e.g. incorporated as a likelihood term in a
CONDENSATION framework [18].

The source code for the objectness measure is available
from http://www.vision.ee.ethz.ch/˜calvin.

1.1. Related work
This paper is related to several research strands, which dif-
fer in how they define ‘saliency’.



Interest points. Interest point detectors (IPs) [20, 27] re-
spond to local textured image neighborhoods and are widely
used for finding image correspondences [27] and recogniz-
ing specific objects [24]. IPs focus on individual points,
while our approach is trained to respond to entire objects.
Moreover, IPs are designed for repeatable detection in spite
of changing imaging conditions, while our objectness mea-
sure is trained to distinguish objects from backgrounds. In
sec. 5, we experimentally evaluate IPs on our task.

Class-specific saliency. A few works [26, 28, 33] define
as salient the visual characteristics that best distinguish a
particular object class (e.g. cars) from others. This class-
specific saliency is very different from the class-generic task
we tackle here.

Generic saliency. Since [19], numerous works [2, 13, 14,
17] appeared to measure the saliency of pixels, as the degree
of uniqueness of their neighborhood w.r.t. the entire image
or the surrounding area [23, 25]. Salient pixels form blobs
that ‘stand out’ from the image.

Liu et al. [23] find a single dominant salient object in
an image. It combines pixel-based saliency measurements
in a CRF and derives a binary segmentation separating
the object from the background. Analogously, [31] finds
the region with the highest sum of pixel-saliency. These
approaches do not seem suitable for the PASCAL VOC
dataset [7] where many objects are present in an image and
they are not always dominant (fig. 10, 11).

This paper is most related to the above works, as we
are looking for generic objects. We incorporate a state-of-
the-art saliency detector [17] as one cue into our objectness
measure. However, we also include other cues than ‘stand
out’ saliency and demonstrate that our combined measure
performs better at finding objects (sec. 5) .

Our work differs from the above also in other respects.
The unit of analysis is not a pixel, as possibly belonging
to an object, but a window, as possibly containing an en-
tire object. This enables scoring all windows in an image
and sampling any desired number of windows according to
their scores. These can then directly be fed as useful loca-
tion priors to object class learning and detection algorithms,
rather than making hard decisions early on. We experimen-
tally demonstrate this with an application to speed up object
detection (sec. 6).

Analyzing windows also enables evaluating more com-
plex measures of objectness. In sec. 2.4, we propose a new
image cue, and demonstrate it performs better than tradi-
tional saliency cues [17] at finding entire objects.

Finally, to the best of our knowledge, we are the first to
evaluate on a dataset as varied and challenging as PASCAL
VOC 07, where most images contain many objects and they
appear over a wide range of scales. We explicitly train our
objectness measure to satisfy the strict PASCAL-overlap
criterion, and evaluate its performance using it. This mat-
ters because it is the standard criterion for evaluating the
intended clients of our objectness measure, i.e. object de-
tection algorithms.

(a) (b) (c)

(d) (e) (f)
Fig. 2: MS success and failure. Success: the large giraffe in the
original image (a) appears as a blob in the saliency map for a high
scale (b), while the tiny airplane in the map for a low scale (c).
Having multi-scale saliency maps is important for finding more
objects in challenging datasets. Interestingly, at the low scale the
head of the giraffe is salient, rather than the whole giraffe. Fail-
ure: the numerous cars in the original image (d) are not salient at
any scale. We show the saliency maps for 2 scales in (e) and (f).
The contour of the building appears more salient than the cars.

1.2. Plan of the paper.
Sec. 2 describes the image cues composing our objectness
measure. Sec. 3 and 4 show how to learn the cue param-
eters and how to combine them in a Bayesian framework.
We present extensive experiments in sec. 5 and show appli-
cations of the objectness measure to aid class-specific object
detectors [4, 10, 32] in sec. 6.

2. Image cues
As mentioned in sec. 1, objects in an image are character-
ized by a closed boundary in 3D space, a different appear-
ance from their immediate surrounding and sometimes by
uniqueness. These characteristics suggested the four image
cues we use in the objectness measure: multi-scale saliency,
color contrast, edge density and straddleness.

2.1. Multi-scale Saliency (MS).
Hou et al. [17] proposed a global saliency measure based on
the spectral residual of the FFT, which favors regions with
an unique appearance within the entire image. As it prefers
objects at a certain scale, we extend it to multiple scales
(fig. 2). Moreover, as [17] suggests, we process the color
channels independently as separate images.

For each scale s, we use [17] to obtain a saliency map
IsMS(p) defining the saliency for every pixel p. Based on
this, we define the saliency of a window w at scale s as:

MS(w, θsMS) =
X

{p∈w|Is
MS(p)≥θs}

IsMS(p)× |{p ∈ w|I
s
MS(p) ≥ θs}|
|w| (1)

where the scale-specific thresholds θsMS are parameters to
be learned (sec. 3). Saliency is higher for windows with
higher density of salient pixels (second factor), with a bias
towards larger windows (first factor). Density alone would
score highest windows comprising just a few very salient
pixels. Instead, our measure is designed to score highest
windows around entire blobs of salient pixels, which corre-
spond better to whole objects (fig. 2). The need for multiple
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Fig. 3: CC success and failure. Success: the windows containing
the objects (cyan) have high color contrast with their surrounding
ring (yellow) in images (a) and (b). Failure: the color contrast for
windows in cyan in image (c) is much lower.

scales is evident in fig. 2 as the windows covering the two
objects in the image (airplane, giraffe) score highest at dif-
ferent scales. This MS cue measures the uniqueness char-
acteristic of objects.

2.2. Color Contrast (CC).
The CC cue is a local measure of the dissimilarity of a win-
dow to its immediate surrounding area. The surrounding
Surr(w, θCC) of a window w is a rectangular ring obtained
by enlarging the window by a factor θCC in all directions,
so that |Surr(w,θCC)|

|w| = θ2CC−1 (fig. 3a-f). The CC between
a window and its surrounding is computed as the Chi-square
distance between their LAB histograms h:

CC
`
w, θCC) = χ2(h(w), h(Surr(w, θCC))

´
(2)

CC is a useful cue because objects tend to have a different
appearance (color distribution) than the background behind
them. In fig. 3a, windows on the grass score lower than
windows half on a sheep and half on the grass. Windows
fitting a sheep tightly score highest. This cue measures the
different appearance characteristic of objects.

CC is related to the center-surround histogram cue
of [23]. However, [23] computes a center-surround his-
togram centered at a pixel, whereas CC scores a whole win-
dow as whether it contains an entire object. The latter seems
a more appropriate level of analysis.

2.3. Edge Density (ED).
The ED cue measures the density of edges near the win-
dow borders. The inner ring Inn(w, θED) of a window w
is obtained by shrinking it by a factor θED in all directions,
so that |Inn(w,θED)|

|w| = 1/θ2ED. The ED is computed as the
density of edgels in the inner ring:

ED(w, θED) =

P
p∈Inn(w,θED) IED(p)

Len(Inn(w, θED))
(3)

The binary edgemap IED(p) ∈ {0, 1} is obtained using the
Canny detector, and Len(·) measures the perimeter 1. The
ED cue captures the closed boundary characteristic of ob-
jects, as they tend to have many edgels in the inner ring
(fig. 4d-e).

2.4. Superpixels Straddling (SS).
A different way to capture the closed boundary character-
istic of objects rests on using superpixels [11] as features.

1The expected number of boundary edgels grows proportionally to the
perimeter, not the area, because edgels have constant thickness of 1 pixel.

(a) (b) (c)

(d) (e) (f)
Fig. 4: ED success and failure. Success: given images (a) and (b)
the cyan windows covering the bus and the aeroplane score high as
the density of edges is concentrated in these regions. Failure: in
image (c) the cyan window along with many other windows cover-
ing the water score high determining a high rate of false positives.
In particular the windows covering the boats have a low score. We
show the Canny edge maps in (d), (e) and (f).

Superpixels segment an image into small regions of uniform
color or texture. A key property of superpixels is to pre-
serve object boundaries: all pixels in a superpixel belong
to the same object [30]. Hence, an object is typically over-
segmented into several superpixels, but none straddles its
boundaries (fig. 5). Based on this property, we propose here
a cue to estimate whether a window covers an object.

A superpixel s straddles a windoww if it contains at least
one pixel inside and at least one outside w. Most of the
surface of an object window is covered by superpixels con-
tained entirely inside it (w1 in fig. 5c). Instead, most of the
surface of a ‘bad’ window is covered by superpixels strad-
dling it (i.e. superpixels continuing outside the window, w2
in fig. 5c). The SS cue measures for all superpixels s the
degree by which they straddle w:

SS(w, θSS) = 1−
X

s∈S(θSS)

min(|s \ w|, |s
T
w|)

|w| (4)

where S(θSS) is the set of superpixels obtained using [11]
with a segmentation scale θSS . For each superpixel s,
eq. (4) computes its area |s

⋂
w| insidew and its area |s\w|

outside w. The minimum of the two is the degree by which
s straddles w and is its contribution to the sum in eq. (4).

Superpixels entirely inside or outside w contribute 0 to
the sum. For a straddling superpixel s, the contribution is
lower when it is contained either mostly inside w, as part of
the object, or mostly outside w, as part of the background
(fig. 5c). Therefore, SS(w, θSS) is highest for windows w
fitting tightly around an object, as desired.

To the best of our knowledge, no earlier work has pro-
posed a cue similar to SS. In sec. 5 we show that SS out-
performs all other cues we consider (including MS and its
original form [17]).

2.5. Implementation details.
MS. For every scale s ∈ {16, 24, 32, 48, 64} and chan-
nel c we rescale the image to s × s and compute the score
MS(w, θs) using one integral image [3].
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Fig. 5: The SS cue. Given the segmentation (b) of image (a), for
a window w we compute SS(w, θSS) (eq. 4). In (c), most of the
surface of w1 is covered by superpixels contained almost entirely
inside it. Instead, all superpixels passing by w2 continue largely
outside it. Therefore, w1 has a higher SS score than w2. The
window w3 has an even higher score as it fits the object tightly.

CC. We process the image in the quantized LAB space
8 × 16 × 16 and compute CC(w, θCC) using one integral
images per quantized color.
ED. We rescale the image to 200×200 pixels and compute
ED(w, θED) using one integral image.
SS. We obtain superpixels S(θSS) using the algorithm
of [11] with segmentation scale θSS . We efficiently com-
pute SS(w, θSS) using the following procedure. For each
superpixel s we build an integral image Is(x, y) giving the
number of pixels of s in the rectangle (0, 0) → (x, y).
Based on Is(x, y), we can rapidly compute the number
|s

⋂
w| of pixels of s contained in any window w (fig. 6).

The area |s \ w| outside w is readily obtained as |s \ w| =
|s| − |s

⋂
w|. Therefore, we can efficiently compute all el-

ements of SS(w, θSS) (eq. 4).

3. Learning cue parameters
We learn the parameters of the objectness cues from a train-
ing dataset T consisting of 50 images randomly sampled
from several well-known datasets, including INRIA Per-
son [4], Pascal VOC 06 [8], and Caltech 101 [9].

These images contain a total of 291 instances of 48 di-
verse classes including a variety of objects such as sheep,
buildings and keyboards. For training, we use annotated
object windowsO, but not their class labels as our aim is to
learn a measure generic over classes.

There are 8 parameters to be learned: θCC , θED, θSS
and θsMS (for 5 scales s). We can learn from a rather small
training set thanks to the low number of parameters and to
the ability to produce many training examples from every
image (fig. 8).
CC, ED, SS. We learn θCC , θED and θSS in a Bayesian
framework. As all three are learned in the same manner, we
restrict the explanation to θ = θCC . For every image in T
we generate 100000 random windows uniformly distributed
over the entire image. Windows covering 2 an annotated

2We follow the widespread PASCAL criterion [7], and consider a win-
dow w to cover an object o if |w

T
o|/|w

S
o| > 0.5.

Fig. 6: Efficiently computing eq. (4). Window w2 from fig. 5c is
straddled by three superpixels. The individual superpixel contri-
butions min(|s\w2|,|s

T
w2|)

|w2|
are computed based on the three inte-

gral images Is. We show the integral images Is in gray value.

object are considered positive examples (Wobj), the others
negative (Wbg) (fig. 8).

For any value of θ we can build the likelihoods
for the positive pθ(CC(w, θ)|obj) and negative classes
pθ(CC(w, θ)|bg), as histograms over the positive/negative
training windows. Note how these histograms depend on θ.

We now find the optimal θ∗ by maximizing the posterior
probability that object windows are classified as positives

θ∗ = arg max
θ

Y
w∈Wobj

pθ(obj|CC(w, θ)) = (5)

= arg max
θ

Y
w∈Wobj

pθ(CC(w, θ)|obj) · p(obj)P
c∈{obj,bg} pθ(CC(w, θ)|c) · p(c)

where the priors are set by relative frequency:
p(obj) = |Wobj|/(|Wobj|+ |Wbg|), p(bg) = 1− p(obj).

The advantage of this procedure is that the distribution of
training samples is close to what the method will see when
a new test image is presented, as opposed to just using the
ground-truth and a few negative samples. Moreover, it is
likely to generalize well, as it is trained from many variants
of the annotated windows inWobj (i.e. all those passing the
PASCAL criterion, which is also how the method will be
evaluated on test images, sec. 5).

For a window w, the learned parameters θCC and θED
define the outer ring Surr(w, θCC) and the inner ring
Inn(w, θED). The learned parameter θSS defines the su-
perpixel segmentation scale.
MS. We learn each threshold θsMS independently, by op-
timizing the localization accuracy of the training objects O
at each scale s. For every training image I and scale s, we
compute the saliency map IsMS and the MS score of every
possible window. Running non-maximum suppression on
this 4D score space 3 gives a set of local maxima windows
Wmax
s . We find the optimal θs∗MS by maximizing

θs∗MS = arg max
θs
MS

X
o∈O

max
w∈Wmax

s

|w
T
o|

|w
S
o| (6)

i.e. we seek for the threshold θs∗MS that leads to local max-
ima of MS most accurately covering the annotated objects
O (according to the PASCAL criterion). Notice how this
procedure is discriminative, as maximizing (6) implicitly
entails also minimizing the score of windows without an-
notated objects.

4. Bayesian cue integration
Since the four cues are quite complementary, using several
of them at the same time appears promising. MS gives only

3This is implemented efficiently by the method of [29]
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Fig. 7: SS success and failure. Success: The cyan windows in (a)
and (b) have high SS score computed from segmentations (d) and
(e). Failure: Segmentation produces superpixels (f) not preserving
the boundaries of the small objects in (c), resulting in low SS.

a rough indication of where an object is as it is designed to
find blob-like things (fig. 2). Instead, CC provides more
accurate windows, but sometimes misses objects entirely
(fig. 3). ED provides many false positives on textured areas
(fig. 4). SS is very distinctive but depends on good super-
pixels, which are fragile for small objects (fig. 7).

To combine cues we train a Bayesian classifier to dis-
tinguish between positive and negative quadruplets of val-
ues (MS,CC,ED,SS). For each training image, we sample
100000 windows from the distribution given by the MS cue
(thus biasing towards better locations), and then compute
the other cues for them. Windows covering an annotated
object are considered as positive examplesWobj, all others
as negativeWbg.

A natural way to combine our cues is to model
them jointly. Unfortunately, it would require an enor-
mous number of samples to estimate the joint like-
lihood p(cue1, . . . , cuen|obj), where cuei ∈ C =
{MS,CC,ED,SS}, 1 ≤ i ≤ n, n = 4. Therefore, we
choose a Naive Bayes approach here. We have also tried
a linear discriminant, but it performed worse in our experi-
ments, probably because it combines cues in a too simplistic
manner (i.e. just a weighted sum).

In the Naive Bayes model, the cues are independent,
so training consists of estimating the priors p(obj), p(bg),
which we set by relative frequency, and the individual cue
likelihoods p(cue|c), for cue ∈ C and c ∈ {obj,bg}, from
the large sets of training windowsWobj,Wbg.

After training, when a test image is given, we can sample
any desired number T of windows from MS and then com-
pute the other cues for them (as done above for obtaining
training windows). Considering a subset of cues A ⊆ C,
the posterior probability of one of these test windows w is

p(obj|A) =
p(A|obj)p(obj)

p(A)
(7)

=
p(obj)

Q
cue∈A p(cue|obj)P

c∈{obj,bg} p(c)
Q

cue∈A p(cue|c)

This posterior constitutes the final objectness score of w.
The T test windows and their scores (7) form a distribution
from which we can sample any desired final number F of

Fig. 8: Obtaining positive and negative examples. Given an im-
age we generate 100000 uniformly distributed windows and label
them as positive or negative according to the PASCAL criterion.
We show the annotated object window (green), a positive (blue)
and two negative (red) examples.

windows. Note how eq. (7) allows us to combine any subset
A of cues, e.g. pairs of cues A = {MS,CC}, triplets A =
{MS,CC,SS} or all cues A = C = {MS,CC,ED,SS}.
Function (7) can combine any subset rapidly without re-
computing the likelihoods.
Sampling procedure. T window scores form a multino-
mial distribution D . Naively sampling F windows from D
requires T · F operations, so we use an efficient sampling
procedure. From the T scores we build the cumulative sum
score vector v. Note how the elements of v are sorted in as-
cending order and the last vector element v(T ) is the sum of
all scores. To sample a window we first generate a random
number u uniformly distributed in [0, v(T)]. Then we do a
binary search in v to retrieve the interval [vi−1, vi] contain-
ing u. The chosen sample i has score vi. Hence, sampling
F windows only costs F · log2T operations. We always use
this procedure to sample from a multinomial in this paper.

5. Experiments
We evaluate the performance of our objectness measure
on the popular PASCAL VOC 07 dataset [7], which is
commonly used to evaluate class-specific object detec-
tors [4, 10, 32]. In PASCAL VOC 07 each image is an-
notated with ground-truth bounding-boxes of objects from
twenty categories (boat, bicycle, horse, etc.). Thus, it is very
suitable for our evaluation, as we want to find all objects in
the image, irrespective of their category. We evaluate on all
4952 images in the official test set [7] where objects appear
against heavily cluttered backgrounds and vary greatly in
location, scale, appearance, viewpoint and illumination.
Evaluation setup. As there are billions of windows in an
image it is expensive to compute each cue for all windows.
Moreover, our measure is intended as a focus of attention
mechanism for later applications, so it is useful to output a
reasonable number of windows likely to cover objects.

For SS, MS and ED, we build a distribution D by scor-
ing all the T windows on a regular 4D grid. Computing
CC is more expensive due to the large number of integral
images involved, so we build a distribution D by scoring
T = 100000 windows uniformly distributed over the im-
age. Each cue is evaluated below on F = 1000 windows
per image sampled from D.

For a cue combination, to build D we sample T =
100000 windows from the distribution given by MS, com-
pute the other cues for them and score them with eq. (7).
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Fig. 9: DR/STN plots. (a) MS vs [17, 19]; (b) single cues vs baselines; (c) cue combinations vs SS. We report the ALC for each curve.

Each cue combination is evaluated below on F = 1000
samples from D. Therefore, each single cue and cue combi-
nation is evaluated uniformly on 1000 windows per image.
DR-STN curves. The performance of a method is eval-
uated with detection-rate/signal-to-noise (DR/STN) curves.
DR is the percentage of ground-truth objects covered by a
window output by the method. An object is only consid-
ered covered by a window if the strict PASCAL-overall cri-
terion [7] is satisfied (intersection-over-union > 0.5). STN
is the percentage of windows covering a ground-truth ob-
ject. We summarize a DR/STN curve with a single value:
the area to the left of the curve (ALC), and use it to compare
methods.
MS vs [17, 19] We compare our MS cue to [17] and [19]
(fig. 9a). The Hou-Direct curve refers to [17] as originally
proposed. A single saliency map at scale s = 64 is thresh-
olded at its average intensity4. Each connected component
in the resulting binary map is output as an object. The
Itti-Direct curve refers to [19] as originally proposed. The
saliency map is computed and the most salient objects are
extracted from it using Itti’s procedure [19]5.

Both procedures make hard decisions and output only
few windows per image (about 5-10). As the curves show,
both methods fail on the challenging PASCAL VOC 07
dataset. Hou-Direct performs better than Itti-Direct, but still
reaches only about 0.18 DR and 0.05 STN.

For a fair comparison to our method, the Hou-Sampled
curve reports performance when inserting [17] into our
framework: we use their saliency map in our window score
(eq. 1) and learn the threshold θ64 from our training set as
in eq. (6). Finally, the MS curve uses all color channels and
multiple scales, with separate scale-specific learned thresh-
olds. DR/STN performance curves improve steadily as we
progress towards our MS cue, showing that all the compo-
nents we propose contribute to its success.
Baselines. In the following we compare our objectness
measure to three baselines (fig 9b): random chance (RC),
interest points (IP), and a histogram of oriented gradients
(HOG) [4] detector (OD). For RC we generate 1000 ran-
dom windows with random scores. For IP we extract in-
terest points [27] and score every window in a 4D regular

4this gives better results than the threshold of [17], i.e. 3× the average
5using software fromhttp://www.saliencytoolbox.net/

grid as IP(w) = 1√
|w|

∑
{p∈w} cornerness(p). For eval-

uation we sample 1000 windows from this grid according
to their scores. HOG was shown to perform well in class-
specific detection. Here we train it to detect objects of arbi-
trary classes: for OD we train a single HOG detector from
all objects in the same 50 images used to train our method
(sec. 3). From all detections, we sample 1000 windows ac-
cording to their scores.
Single cues. Fig. 9b reports performance for our single
cues and for the baselines. All our cues perform far above
chance (RC). All cues but CC outperform IP, with MS and
SS leading by a wide margin. This shows that finding entire
objects cannot simply be reduced to interest point detec-
tion. Moreover, our newly proposed SS cue performs best,
substantially above the second best cue MS (and therefore
also above [17, 19]). This demonstrates SS is a powerful
alternative to traditional ‘stand out’ saliency cues. Finally,
note how OD performs very poorly, which confirms that
generic object detection is different from class-specific de-
tection. We believe OD fails because no single pattern of
gradients within a window is characteristic for objects in
general, whereas our cues are designed to capture this.
Cue combinations. Combining cues in our Bayesian
framework improves results for all cue combinations but
those including both SS and ED (fig. 9c). Adding CC to
a combination of the best two single cues MS + SS further
raises performance and leads to the best cue combination
MS + CC + SS. This shows they are complementary cues,
all necessary for finding objects in highly challenging im-
ages. Combining cues raises STN, as it makes the object-
ness measure more distinctive. 23% of the 1000 windows
sampled from MS + CC + SS cover an object. This high
STN is valuable for algorithms taking sampled objectness
windows as input, such as class-specific object detectors
(next section).

6. Speeding up class-specific detectors
Many state-of-the-art class-specific object detectors [5, 10,
15] are based on sliding windows. In sec. 6.1 we give a
general algorithm for using our objectness measure as a lo-
cation prior for any sliding window detector. In sec. 6.2-6.4
we detail how this algorithm works for three particular de-
tectors [4, 10, 21]. Using objectness greatly reduces the



Hou-Direct MS MS + CC + SS MS + CC + SS MS + CC + SS MS + CC + SS MS + CC + SS

Fig. 10: Pascal VOC 07 examples. First 3 columns: example output of Hou-Direct, and 10 windows sampled from MS and
MS + CC + SS. We mark in yellow windows correctly covering ground-truth object (cyan); if there is more than one correct window,
the best one is shown; all other windows are in red. Hou-Direct output windows rarely correctly cover an object. MS finds some of the
objects, whereas MS + SS + CC is more accurate and finds more objects. The last four columns show 10 windows sampled from our
final objectness measure MS + CC + SS. It can find many of the objects in these highly challenging images.

Algorithm 1 Using objectness for class-specific detectors.
Input: F,D, c
Output: Det

1: I = {w1, . . . , wF }, wi  D,∀i
2: Is = {(w1, sw1), . . . , (wF , swF )}, swi = c(wi), ∀i.
3: Ps = NMS(Is) = {(wn1 , swn1

), . . . , (wnP , swnP
)}

4: LM = {wlmn1 , . . . , w
lm
nP
}, wlmnj

= maxw∈Vwnj
sw

5: Det = NMS(LM)

number of windows evaluated by the detectors (sec. 6.5).

6.1. General algorithm

The general scheme for using our objectness measure as a
location prior for object detectors is algorithm 1. The algo-
rithm inputs the class-specific confidence function c which
the detector employs to score a window.

We build an initial set I of F = 1000 windows sampled
from the distribution D of windows scored by our object-
ness measure MS + CC + SS (line 1). We use c to score
each window in I (line 2). We then run the non-maxima
suppression of [10] to remove every window overlapping
more than 50% with a higher scored window. This results in
a set Ps of promising windows (line 3). For every window
wp ∈ Ps, we iteratively move to the local maximum of c
in its neighborhood Vwp , resulting in window wlmp (line 4).
Finally, we run NMS on the local maxima windows LM
and obtain detections Det (line 5).

In order to use this algorithm one has to specify a win-
dow scoring function c, which is specific to a particular de-
tector and object class, and a window neighborhood V .

6.2. Speeding up [4]

The detector of [4] models a class by a single window filter
c on HOG features. In [4] this filter is applied at all positions
(x, y) and scales s on a grid over image. In our algorithm
instead, we only apply c to the sampled windows wi ∈ I.
Next, we search for a local maximum in the neighborhood
Vwi

on the grid, for up to 5 iterations.

6.3. Speeding up [10]
The detector of [10] models a class with a mixtures of mul-
tiscale deformable part models. More complex than [4], the
model includes a root filter and a collection of part filters
and associated deformation models. The score of a window
at location (x, y, s) combines the score of the root filter, the
parts and a deformation cost measuring the deviation of the
part from its ideal location.

In our algorithm, we score only the sampled windows
wi ∈ I and apply the neighborhood search as in sec. 6.2.

6.4. Speeding up Bag-of-words detectors
The window scoring function c can also be a Bag-of-visual-
words classifier [21], which represents a window with a
histogram of local features quantized over a precomputed
codebook. Here we follow the setup of [21] and use as c a
linear SVM classifier.

We score only the sampled windows wi ∈ I and set the
neighborhood Vwi

to all windows obtained by translating
wi by 2 pixels and/or scaling wi by factor 1.1. We iterate
local search until convergence (usually about 10 iterations).

Since for this type of window scoring function it is possi-
ble to apply the branch-and-bound technique ESS [21], we
compare to ESS rather than to traditional sliding-windows
on a grid [4, 10].

6.5. Quantitative evaluation
We compare the 3 object detectors [4, 10, 21] to our al-
gorithm 1 on the entire PASCAL VOC 07 test set (20 ob-
ject classes over 4952 images) using the standard PASCAL
VOC protocol [7].

Our algorithm uses the same window scoring function
c used by the corresponding detector. We train it for [10]
using their source code6. For [4] we train [10] with only the
root filter (no parts). For [21] we obtained image features
and SVM hyperplanes from the authors. For detection, we
use the source code of [10] for both [10] and [4], and the
source code of ESS 7 for [21].

6http://people.cs.uchicago.edu/˜pff/latent/
7http://sites.google.com/site/christophlampert/software



Table 1: For each detector [4, 10, 21] we report its performance
(left column) and that of our algorithm 1 using the same window
scoring function (right column). We show the average number
of windows evaluated per image #win and the detection perfor-
mance as the mean average precision (mAP) over all 20 classes.

[4] OBJ- [4] [10] OBJ- [10] ESS-BOW[21] OBJ-BOW
mAP 0.186 0.161 0.263 0.224 0.127 0.112
#win 79945 2033 18562 1998 183501 2960

Fig. 11: Class-specific detections. We show the output of three
object detectors in yellow (first row - [4], second row - [10], third
row -ESS). We show in red the output of our algorithm using the
same window scoring function as the corresponding detector. Note
how often the yellow and the red windows are identical. Ground-
truth objects are in cyan.

As tab. 1 shows, our algorithm evaluates 10x-40x fewer
windows than sliding-windows [4, 10]. Interestingly, it also
evaluates 50x fewer windows than ESS [21] (notice that the
implicit search space of [21] is larger than that of [4, 10]
as it contains all windows, not just a grid). Moreover, our
algorithm’s mAP is only slightly below the original detec-
tors (−0.026 on average), showing this massive speedup 8

comes with little compromise on performance. Finally, our
algorithm is general, as it supports any window scoring
function. ESS instead requires a (tight) bound on the best
score in a contiguous set of windows (for example, for the
scoring functions of [4, 10] no bound is currently known
and ESS is not applicable).

7. Conclusions
We presented an objectness measure trained to distinguish
object windows from background ones. It combines several
image cues, including the innovative SS cue. We demon-
strated that this cue outperforms traditional saliency [17]
and that the combined objectness measure performs better
than any cue alone. Moreover, we have given an algorithm
to employ objectness to greatly reduce the number of win-
dows evaluated by class-specific detectors. Objectness can
be useful also in other applications, such as to help learning
object classes in a weakly supervised scenario, where object
locations are unknown, and for tracking objects in video.

8The additional cost to compute objectness and sample 1000 windows
I is negligible as it is done only once per image. The same windows I are
reused for all 20 classes, and can in fact be reused for any class.
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