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Abstract. The supervised learning paradigm assumes in general that
both training and test data are sampled from the same distribution.
When this assumption is violated, we are in the setting of transfer learn-
ing or domain adaptation: Here, training data from a source domain, aim
to learn a classifier which performs well on a target domain governed by
a different distribution. We pursue an agnostic approach, assuming no
information about the shift between source and target distributions but
relying exclusively on unlabeled data from the target domain. Previous
works [2] suggest that feature representations, which are invariant to do-
main change, increases generalization. Extending these ideas, we prove a
generalization bound for domain adaptation that identifies the transfer
mechanism: what matters is how much learnt classier itself is invariant,
while feature representations may vary. Our bound is much tighter for
rich hypothesis classes, which may only contain invariant classifier, but
can not be invariant altogether. This concept is exemplified by the com-
puter vision tasks of semantic segmentation and image categorization.
Domain shift is simulated by introducing some common imaging distor-
tions, such as gamma transform and color temperature shift. Our experi-
ments on a public benchmark dataset confirm that using domain adapted
classifier significantly improves accuracy when distribution changes are
present.

1 Introduction

The fundamental assumption in supervised learning is that training and test
data arise from the same distribution. However in real life applications, it is
common that training examples from one source domain are used to build the
predictor that is expected to perform a related task on a different target domain.
This change requires domain adaptation.

The situation with domain changes and the need for domain adaptation is
shared by many fields, e.g., we have to account for domain change when we train
a spam filter for a new user on examples from other users. In natural language
processing, this occurs in e.g., part-of-speech tagging [5], where the tagger is
trained on medical texts and deployed on legal texts. In computer vision systems,
classifiers are usually trained prior to deployment on data which are manually
annotated by experts. This labeling process is tedious and expensive, whereas
data collection is usually fast and inexpensive. For instance, collecting unlabeled
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data from a video surveillance system under different settings (different camera,
lighting) requires little effort, but labeling this data demands a human annotator
and often even a trained domain expert. Hence, the ability to adapt to a new
domain using only unlabeled data from a new target distribution is of substantial
practical advantage.

To achieve good generalization in supervised learning one should keep the
hypothesis class simple while minimizing the empirical risk. Intuitively, in case
of domain adaptation an additional requirement should be imposed: the source
and the target distributions should look the same for the good classifier. In other
words, classifier should be invariant to the change of the distribution.

We consider the setting where a finite set of labeled training examples is
available from the source domain, but only few unlabeled examples are available
from the target domain. We proceed by first proving a bound on the target
generalization error, which is dependant on the classifier’s training error on the
source distribution and its invariance to distribution changes. This bound is
much tighter for rich hypothesis classes, that only contain invariant hypothesis,
but are quite variable in general. Invariance is formulated as the inability of the
classifier to discriminate between the source and the target domain. Finally, we
construct an algorithm that minimizes this bound.

Along with a theoretical analysis of domain adaptation we present an ex-
perimental validation of our results. Computer vision serves as a challenging
application domain for machine learning, which allows us to visually inspect
our results. We experimentally show the applicability of our approach by con-
structing a domain adaptive version of semantic texton forest [13] (STF) for
image semantic segmentation and categorization. Semantic segmentation simul-
taneously requires to segment and recognize objects, one of the fundamental and
most challenging computer vision tasks. We study the adaptation of STF to color
cast and gamma transform, which are very natural distortions in imaging. We
will see that such distortions are very damaging for an STF. But with domain
adaptation we are able to improve results in some cases by more than a factor
of two.

The paper is organized as follows. We first shortly describe previous works.
Section 3 formally defines our problem and notation. In section 4 we present
our theoretical bound. In section 5 the domain adaptive random forest for se-
mantic segmentation and categorization is discussed. Section 6 describes our
experimental results followed by a conclusion.

2 Prior Work
In this paper we consider the setting of domain adaptation for an arbitrary shift
in the data distribution and where only unlabeled data from the target domain
is available. Much research has been done to address each constraint individu-
ally. However little has been reported when both constraints are considered. We
briefly review the literature for different settings of learning under distribution
shift.

Transfer learning Transfer learning is a setting when labeled data from the tar-
get distribution is available. In [4] authors prove uniform convergence bounds
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for algorithms that minimize a convex combination of source and target em-
pirical risk. A thorough experimental evaluation for this scenario (minimization
of convex combination of risks) can be found in [12]. In [8] a boosting method
for transfer learning is developed. [11] studies adaptation with multiple sources,
where for each source domain, the distribution over the input points as well as a
hypothesis with error at most ε are given. They prove that combinations of hy-
potheses weighted by the source distributions benefit from favorable theoretical
guarantees.

Covariate shift One common assumption to address the case where labels are not
available is that of covariate shift. Here, only the marginal distribution Pr[X]
changes and the conditional remains unchanged, i.e., PrDS

[Y |X] = PrDT
[Y |X].

In [3] the general problem of learning under covariate shift is formulated as an
integrated optimization problem and a kernel logistic regression classifier is de-
rived for solving it. A nonparametric method which directly produces resampling
weights without distribution estimation for learning under covariate shift is pre-
sented in [10]. Their method works by matching distributions between training
and testing sets in feature space. Another paper [3] studies a complex problem
of learning multiple tasks (multitask learning), when each task may have a co-
variate shift. They derive a learning procedure that produces resampling weights
which match the pool of all examples to the target distribution of any given task.

Semi-supervised learning Semi-supervised learning (SSL) [6] is another strategy
to improve the classifiers accuracy by using unlabeled data. Our setting should
not be confused with semi-supervised learning. As in SSL we use unlabeled data
to improve our classifier. While SSL assumes data to come from the same distri-
bution, our setting does not impose such an assumption. One common approach
to semi-supervised learning is to treat labels of unlabeled data as additional vari-
ables which have to be optimized to maximize the possible separation margin.
Such strategy could also be advocated for domain adaptation as a valid heuristic
(and was used for that purpose in [1]), though it has no theoretical support. Ex-
amples of semi-supervised methods are tSVM [14] and semi-supervised random
forests [7].

Domain adaptation The setting that is closest to ours has been defined in [2].
The authors also consider the case with no assumptions about shift and they re-
quire only unlabeled data from target distribution. By studying the influence of
feature representation on domain adaptation, they theoretically prove that the
hypothesis space that is invariant to distribution changes improves generaliza-
tion, although the problem of finding such a space is not addressed. In contrast
to [2] we are interested in learning a classifier from a rich, possibly not invariant
family, which generalizes well under distribution shift. We discuss this work in
more details in Section 4.

3 Problem Setup

Let X be the instance set and Y be the set of labels. The joint distributions are
given by D̃S(X × Y ) and D̃T (X × Y ), for the source and the target domains



4

respectively. The corresponding marginal distributions of X are denoted by DS

and DT . To simplify the notation we restrict ourselves to dichotomies, i.e., to
two classes. Labeled training samples are drawn from D̃S(X × Y ), but only
samples of unlabeled data are gathered from DT . Let H ⊆ {h : X → Y } be
the hypothesis space. The probability that hypothesis h makes an error on the
source domain as

εS(h) = E(x,y)∼D̃S
[h(x) 6= y]. (1)

The error on the target domain εT (h) is defined similarly. Zh denotes the
characteristic function of h,

Zh = {x ∈ X : h(x) = 1}. (2)

The symmetric set difference is abbreviated by A∆B = (A \ B) ∪ (B \ A). For
example, PrDS

[Zh∆Zh∗ ] is the probability that [h 6= h∗] with respect to the
marginal distribution of X in the source domain.

We do not make any assumptions about the nature of the domain shift. It is
possible that both marginals Pr(X) and conditional probabilities Pr(X|Y ) are
changing and the resulting bound is completely agnostic.

4 Generalization Bound

Now we derive our theoretical results. Suppose there is a hypothesis in H which
performs λ well on both domains:

inf
h∈H

[εS(h) + εT (h)] ≤ λ. (3)

In the work of Shai Ben-David [2], the following generalization bound was
provided in a form dependant on the A-distance between the source and the
target domain:

εT (h) ≤ε̂S(h) +

√
4

m
(d log

2em

d
+ log

4

δ
)

+ λ+ dH(DS ,D′T ). (4)

In words, the A-distance is proportional to an ability of family of predictors
to distinguish between two distributions:

dA(D,D′) = 2 sup
A∈A
|PrD[A]− PrD′ [A]|. (5)

Unfortunately the question of how to find such a family of predictors was not
addressed. The bound in eq. 4 states that when the features and the hypothe-
sis family are invariant to domain shift, then we can expect to generalize well.
However, the bound does not tell us how to choose the best hypothesis from the
hypothesis class. Even the experimental results in [2] are not fully justified by
this bound, since the feature representation was learnt after seeing the data. For-
mally, to apply this bound, all possible variants of feature representation, which
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could be learnt by structural correspondence learning [5], should be included
into hypothesis family H, which will render the bound trivial.

We will now show a bound, which depends on the characteristics of the partic-
ular hypothesis chosen by the training algorithm, rather than on the hypothesis
class that we choose from. Our bound would allow us to design an algorithm,
that explicitly searches for a hypothesis that minimizes it.

We formalize invariance of a classifier as its inability to distinguish between
the source and the target distributions:

ψ(h) = |PrDS
[Zh]− PrDT

[Zh]|. (6)

ψ(h) has a minimum at zero (high invariance), i.e., the classifier cannot dis-
tinguish between the source and the target distribution. It exhibits a maximum
of one (low invariance) when the classifier can always accurately decide from
which distribution a data point comes from.

Now we are ready to formulate our theorem.
Theorem 1. Let H be a hypothesis space of VC-dimension d. Given m i.i.d.
samples from D̃S, ∀h ∈ H, with probability of at least 1− δ,

εT (h) ≤ε̂S(h) +

√
4

m
(d log

2em

d
+ log

4

δ
) + λ

+ ψ(h) + ψ(h∗) + 2ψ(h · h∗), (7)

where ψ(h) = |PrDS
[Zh]− PrDT

[Zh]|.
Proof. Let h∗ = arg minh∈H(εT (h) + εS(h)), and let λS and λT be the errors of
h∗ on the source and the target domains respectively. Note that λ = λS + λT .

To get the bound in [2] authors bounded the change, induced by the domain
shift, of the difference between the best hypothesis h∗ and the learnt h by the
invariance of the hypothesis family to distribution shift – A-distance. Essentially,
we decompose this invariance into three parts: invariance of the learnt hypothesis,
of the best hypothesis, and of their intersection. The proof is the following:

εT (h) ≤λT + PrDT
[Zh∆Zh∗ ] (8)

=λT + PrDS
[Zh∆Zh∗ ]− PrDS

[Zh∆Zh∗ ] + PrDT
[Zh∆Zh∗ ] (9)

=λT + PrDS
[Zh∆Zh∗ ]− PrDS

[Zh \ Zh∗ ]− PrDS
[Z∗h \ Zh]

+ PrDT
[Zh \ Zh∗ ] + PrDT

[Z∗h \ Zh] (10)

=λT + PrDS
[Zh∆Zh∗ ] + PrDT

[Zh]− PrDT
[Zh ∩ Zh∗ ]− PrDS

[Zh]

+ PrDS
[Zh ∩ Zh∗ ] + PrDT

[Zh∗ ]− PrDT
[Zh ∩ Zh∗ ]

− PrDS
[Zh∗ ] + PrDS

[Zh ∩ Zh∗ ] (11)

≤λT + PrDS
[Zh∆Zh∗ ] + |PrDT

[Zh]− PrDS
[Zh]|

+ |PrDT
[Zh∗ ]− PrDS

[Zh∗ ]|
+ 2 |PrDT

[Zh ∩ Zh∗ ]− PrDS
[Zh ∩ Zh∗ ]| (12)

=λT + PrDS
[Zh∆Zh∗ ] + ψ(h) + ψ(h∗) + 2ψ(h · h∗) (13)

≤λ+ ψ(h∗)︸ ︷︷ ︸
constant

+ εS(h) + ψ(h) + 2ψ(h · h∗)︸ ︷︷ ︸
dependant on h

. (14)
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To finish the proof one needs to apply classic Vapnik-Chervonenkis [14] theory to
bound εs(h) by its empirical estimate. Using Vapnik-Chervonenkis theory again,
we can bound the true ψ by its empirical estimate and an additional complexity
penalty.

Observe that the bound has two parts: a constant part and the second part
that is dependant on h. The constant (w.r.t. h) part is a function of the hypoth-
esis class, which is assumed to be fixed. The part that depends on h consists
of a sum of the classifier’s training error εS(h) and the invariances ψ(h) and
ψ(h · h∗). The term ψ(h) is the invariance of a learnt classifier, which can be
controlled during training. The term ψ(h ·h∗) measures the intersection between
the learnt h and the optimal classifier h∗. It is large when the overlap between
h and h∗ changes a lot after the domain shift. Regretfully ψ(h · h∗) can neither
be measured nor optimized, since we completely lack and knowledge of h∗: it
pinpoints the uncertainty incurred in the absence of labeled data in the target
domain. Hence in our design of the algorithm in section 5 we will only minimize
the empirical estimates of ε(h) and ψ(h).

In contrast to eq. 4 [2], we no longer rely on the invariance of the entire
hypothesis class, but rather only on the specific classifier that we learn. Thus
optimization of the bound can be integrated into the training process directly,
as demonstrated in the following section. Our bound is also tighter for rich
hypothesis classes, where invariant hypothesis is contained, but the class itself
far from being invariant.

5 Algorithm

Theorem 1 provides us with an insight on how such a domain adaptive classifier
could be constructed. When minimizing empirical loss on the source distribu-
tion, ψ(h) should also be minimized by increasing its invariance. We implement
this idea for the random forest classifier. In particular, for extremely randomized
forests [9] (ERF), a predicate for splitting is selected that concurrently maxi-
mizes information gain and minimizes the empirical estimate of ψ(h). Here we
describe an ERF for the computer vision task of semantic segmentation – a task
of simultaneous object segmentation and recognition. This ERF will also provide
us with an adapted kernel for SVM based object categorization.

Semantic Texton Forest The Semantic Texton Forest (STF) proposed in [13] is
employed for semantic segmentation. Their work uses ERF for pixel-wise classi-
fication. Below we shortly describe this approach.

A decision forest is an ensemble of K decision trees. A decision tree works
by recursively branching left or right down the tree according to a learnt binary
split function φn(x) : X → {0, 1} at the node n, until a leaf node l is reached.
Associated with each leaf l in the tree is a learned class distribution P (c|l).
Classification is done by averaging over the leaf nodes L = (l1, ..., lK) reached
for all K trees:

P (c|L) =
1

K

K∑
k=1

P (c|lk). (15)
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Conceptually, a forest consists of a structure, consisting of nodes with split
functions, and probability estimates in the leaf nodes. We can represent a forest
as a complex function f(g(x)), where g : X → NK maps the instance feature
vectors to the vector of leaf indices, reached for each tree and f : NK → [0, 1]C

maps those indices to class probability estimates. Each leaf then has to store a
vector wl = [P (y = 1|l), ..., P (y = C|l)].

Trees are trained independently on random subsets of the training data.
Learning proceeds recursively, splitting the training data at node into left and
right subsets according to a split function φn(x). At each split node, several
candidates for φn(x) are generated randomly, and the one that maximizes the
expected gain in information about the node categories is chosen:

∆H = − |Il|
|In|

H(Il)−
|Ir|
|In|

H(Ir), (16)

where H(I) is the Shannon entropy of the classes in the set of examples I. The
recursive training usually continues to a fixed maximum depth without pruning.
The class distributions P (y|l) are estimated empirically as a histogram of the
class labels yi of the training examples i that reached leaf l.

STF, as presented above, provides prediction on the basis of local context
only. To bring a global image context into play an Image Level Priors (ILP)
are used. The support vector machine (SVM) is trained to predict whether a
certain object is present in the image. Output of SVM is scaled to the probability
simplex and pixel level STF predictions are then multiplied by it. A kernel for
the SVM is constructed by matching the amount of pixels in two given images
that pass through the same nodes in the STF. We refer the reader to the original
publication [13] for more details on ILP and STF training.

Domain Adaptation To adapt a STF to a particular domain, we introduce a
slight modification to the original criterion (eq 16) for choosing the best split
function φn(x). The new criterion ∆H̃ now takes shift invariance into account
as desired

∆H̃ = ∆HS︸ ︷︷ ︸
ε̂(h)

−α
(∣∣∣∣ |ITr ||ITn | − |I

S
r |
|ISn |

∣∣∣∣+

∣∣∣∣ |ITl ||ITn | − |I
S
l |
|ISn |

∣∣∣∣)︸ ︷︷ ︸
ψ̂(h)

, (17)

where ITr and ITl are the data points from the target domain right and left of
the split respectively. ITn is the total amount of the target domain data points
that have been classified by a node. The same notation is used for the source
data with respective superscripts IS(·). First term – ∆HS stands for information
gain on labeled data from source domain and optimizes an empirical estimate
of ε(h). The second term is an empirical estimate of ψ(h). This addendum deals
with unlabeled data from both domains, penalizing those splits, that produce
classifiers invariant, which are not invariant to the distribution shift. This mod-
ification, forces our classifier to both minimize error on the source distribution
and maximize invariance of the classifier towards distribution changes. It slightly
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increases the training time and has no effect on the computational complexity
of the final predictor. Adaptation of the image categorizer emerges in a natural
way, since the adapted STF provides the (adapted) kernel for the image cate-
gorizer. The proposed approach is generic and can possibly be applied to other
application fields too.

6 Experiments

We evaluate our approach on two fundamental computer vision tasks: semantic
segmentation and image categorization. The benefit of using visual data for
domain adaptation experiments is that we can introduce realistic distribution
shifts based on common imaging distortions and visually inspect the results.
For our experiments, we used the MSRC21 dataset. This dataset comprises of
591 images out of 21 object classes. The standard train/test/validation split, as
in [13], contains 276/256/59 images, respectively. In order to estimate standard
error deviation we used 5 random splits of the dataset into train/test/validation
sets keeping the same proportions as in the standard split. We applied several
common imaging distortions on the dataset to simulate distribution shift. We
train our classifiers on the undistorted training images. The unlabeled set of
distorted validation images is used for adaptation.

We compare our algorithm (STF-DA) with two baseline methods. The first
baseline is a STF [13] trained on the undistorted training set only. We also
compared our results to a semi-supervised random forest (STF-SSL) [7] trained
on the training set and unlabeled validation set, for the following reasons. First,
it can be readily integrated into the STF framework. Second, it optimizes the
separation margin of the classifier over all classifier parameters and all labelings
of unlabeled data, which is a valid heuristic for domain adaptation in case when
no information is available on the distribution shift and labeled data for target
domain are lacking. We evaluate on distorted test images. For all classifiers, we
use the implementation with the parameter setting of the STF framework as
provided in [13].

Image Distortions
We consider two distortions common in imaging: color temperature shift and
gamma transform. Distortions are applied to test and validation set. Both distor-
tion types change both the marginal and the conditional probabilities. Color shift
affects only color features, when gamma transform inflicts a nonlinear change
in all features. Moreover, the hypothesis class (random forests) are far from be-
ing invariant towards this distortions. We introduce two versions of the shift for
both distortions. One is deterministic - every image is perturbed in the same way
(shift parameters are constant). In the second case, for each image we randomly
select a distortion parameter. In contrast to the previous works we are able to
deal with this setting both in theory and in practice.

Color Temperature Shift Color temperature is a characteristic of visible light
that has important applications in lighting and photography. The color temper-
ature of a light source is determined by comparing its chromaticity with that
of an ideal black-body radiator. Color temperature shift is a common artifact
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Table 1. Accuracy on semantic segmentation and image categorization tasks.

Distortion Semantic Segmentation Image Categorization

STF STF-SSL STF-DA STF STF-SSL STF-DA
Temp. (det) 0.19± 0.02 0.20± 0.03 0.44± 0.05 0.25± 0.02 0.26± 0.02 0.48± 0.04
Temp. (rand) 0.37± 0.03 0.38± 0.02 0.46± 0.03 0.40± 0.02 0.40± 0.01 0.52± 0.03
Gamma (det) 0.48± 0.04 0.50± 0.03 0.52± 0.03 0.53± 0.04 0.53± 0.04 0.58± 0.02
Gamma (rand) 0.41± 0.03 0.42± 0.02 0.45± 0.03 0.44± 0.02 0.45± 0.03 0.49± 0.02

of digital photography. The same scene shot under different lighting will have
a color cast: the warm yellow-orange cast of tungsten lamps or the blue-white
of florescent tubes. Most digital cameras perform white balance correction by
digitally adjusting color temperature. For the deterministic case we reduced the
temperature of all images by 40%. In the randomized case images have there
temperature lowered by 40, 30, 20% or 10% at random. Deterministic shift is
very strong and renders nearly all color feature non reliable.

Gamma Transform Due to a finite dynamic range and discretization in digital
cameras, images can easily become over- or under-exposed. We mimic this effect
by the gamma transform p̃i,j,c = pγi,j,c. In our experiments we use γ = 2 for
the deterministic case. Again, we have also produced a dataset with γ being
randomly chosen in the interval [0, 4] to make the shift non deterministic. This
shift does not change images as dramatically as color shift, but is not restricted
to a certain feature subspace. One can not adapt to it by just simply discarding
certain features (as it could be done in color shift case).

Results

We evaluate on semantic segmentation task measuring overall per pixel accuracy
and on the task of image categorization measuring average precision (Table 1).

In all experiments, STF-DA outperforms both baseline algorithms. STF-
SSL fails to bring any significant improvement over STF: semi-supervised learn-
ing is inappropriate to account for a distribution shift. The most significant im-
provements of STF-DA over the baselines are observed on the data with color
temperature shift. Our algorithm is able to filter out unreliable color features
and perform better – in the deterministic case the accuracy increases more then
twice. Success on γ transformed data validates that our approach is applicable
even when the shift affects all features and when it is not restricted to only a
subset of features. The more general non deterministic shifts are also processed
satisfactorily by STF-DA.

7 Conclusion
We have presented an analysis of domain adaptation for cases where only un-
labeled examples from the target distribution are available and no assumptions
are made about the shift between the target and the source distributions. Intu-
itively, a good classifier should be invariant to changes in the distribution. We
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formalize this intuition by proving an upper bound of the generalization error of
classifiers trained on the source domain and tested on the target domain. Our
bound explicitly depends on classifier’s invariance and its error on the source
distribution. In contrast to previous work [2] that requires the whole hypothesis
class to be invariant, this study demonstrates that good generalization can be
achieved even when the hypothesis family only contains one invariant classifier.
We experimentally confirm our findings on the challenging tasks of semantic
segmentation and image categorization. We show that our adaptation algorithm
significantly improves results for different imaging distortions, in some cases by
more than twice.
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