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Abstract

We address the task of learning a semantic segmentation
from weakly supervised data. Our aim is to devise a sys-
tem that predicts an object label for each pixel by making
use of only image level labels during training – the informa-
tion whether a certain object is present or not in the image.
Such coarse tagging of images is faster and easier to obtain
as opposed to the tedious task of pixelwise labeling required
in state of the art systems. We cast this task naturally as a
multiple instance learning (MIL) problem. We use Semantic
Texton Forest (STF) as the basic framework and extend it for
the MIL setting. We make use of multitask learning (MTL)
to regularize our solution. Here, an external task of geo-
metric context estimation is used to improve on the task of
semantic segmentation. We report experimental results on
the MSRC21 and the very challenging VOC2007 datasets.
On MSRC21 dataset we are able, by using 276 weakly la-
beled images, to achieve the performance of a supervised
STF trained on pixelwise labeled training set of 56 images,
which is a significant reduction in supervision needed.

1. Introduction

Semantic segmentation is a task of simultaneous object
segmentation and recognition. For each pixel in the image
pi ∈ I one has to predict a label yi ∈ {1, ..., C}, which cor-
responds to semantic object class, like a car, a tree or a face.
This is one of the most challenging and fundamental tasks
in computer vision. In recent years there has been a great
progress in solving this task [11, 10, 7]. These approaches
rely on a training set of images annotated by a human super-
visor, where for each pixel a corresponding label is known.
This ground truth labeling is very tedious, frustrating and in
the end expensive to obtain. As mentioned in [10], it takes
between 15-60 minutes to obtain pixelwise annotation for
just one image! The question we want to answer in this pa-
per is the following: is a full, per pixel labeling of the data

Figure 1. A schematic illustration of our approach. We use mul-
titask multiple instance learning to perform the semantic segmen-
tation of objects that were weakly annotated in training set using
geometric context estimation as secondary task. Bellow is the re-
sult on test image.

a necessary evil, or is a weaker, and thus cheaper and easier
to obtain, way of supervision is suffcient? See Figure 1 for
a schematic illustration of our approach.

We look into the case when supervision is given only
through tags. These image level labels, specify whether a
certain object is present or not in the image, but without
any information on the object’s spatial location or shape.
Thus a given training set is a set of pairs {Ii, Yi}Ni=1, where
Ii is an image and Yi is a set of labels assigned to image
Ii. Such labels can be produced with only few clicks per
image. We specifically aim for the more challenging and
realistic scenario where several objects may be present in a
single image.

We will show that a weakly supervised semantic segmen-
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tation can be naturally cast as multiple instance learning
(MIL) problem. This setting is concerned with a learning
scenario where samples come in multisets (bags) and la-
bels are known only for these bags, but not for the instances
themselves. Current MIL research approaches the prob-
lem by maximizing a classification margin over hypothesis
space (parameters of the classifier) and possible labelings
of the instances in bags. We present empirical evidence that
a direct application of these techniques can severely suffer
from overfitting. Building on the Semantic Texton Forest
(STF) framework [11], we present two techniques that allow
us to solve this problem. First is concerned with the proba-
bility estimates in the leaf nodes of the forest. The second
improves the structure of the forest by means of multitask
learning (MTL).

We report on the following contributions:

• We propose an algorithm for estimating unobserved
pixel label probabilities from image label probabilities
in the leaf nodes of the STF in a regularized way, im-
proving over margin maximizing solution;

• We present an algorithm, that improves the structure of
the STF by using a geometric context estimation task
as a regularizer in MTL framework;

• By training on 276 weakly labeled images from
MSRC21 dataset our method achieves the accuracy of
a supervised algorithm, trained on a set of 56 pixelwise
labeled images.

The remainder of the paper is organized as follows. In
Section 2 we review the area of semantic segmentation and
describe the STF framework that we will be using. In Sec-
tion 3 we survey the multiple instance learning literature. In
the following Section 4 we cast the problem of weakly su-
pervised semantic segmentation as MIL problem and pro-
posed solutions are described. In Section 5 we present the
experimental results and in Section 6 we conclude.

2. Semantic segmentation
In this section we give a brief overview of the semantic

segmentation field. One of the first works [7] incorporated
region and global label features to model shape and con-
text in a conditional random field. Another approach is de-
scribed in [12], where a conditional random field approach
was also taken. In this work unary potentials were trained
by boosting based classifier. They integrated color, texture
and shape cues efficiently and were able to handle many
classes at the same time. [11] proposed a Semantic Tex-
ton Forest (STF) framework yielding state of the art results.
This approach is based on a random forest acting directly on
pixel level. We have chosen STF as our framework, because
it is fast, efficient and easy to reproduce.

Figure 2. A schematic illustration of the STF. A forest consists
of a structure g(x), consisting of nodes with split functions, and
probability estimates in the leaf nodes f .

The Semantic Texton Forest. A decision forest is an
ensemble of K decision trees. A decision tree works by
recursively branching left or right down the tree according
to a learnt binary split function φn(x) : X → {0, 1} at
the node n, until a leaf node l is reached. Associated with
each leaf l in the tree is a learned class distribution P (c|l).
Classification is done by averaging over the leaf nodes L =
(l1, ..., lK) reached for all K trees:

P (c|L) =
1
K

K∑
k=1

P (c|lk). (1)

Conceptually, a forest consists of a structure, consisting
of nodes with split functions, and probability estimates in
the leaf nodes. We can represent a forest as a complex func-
tion f(g(x)), where g : X → NK maps the instance fea-
ture vectors to the vector of leaf indices, reached for each
tree and f : NK → [0, 1]C maps those indices to class
probability estimates. Each leaf then has to store a vector
wl = [P (y = 1|l), ..., P (y = C|l)].

Trees are trained independently on random subsets of the
training data. Learning proceeds recursively, splitting the
training data at node into left and right subsets according
to a split function φn(x). At each split node, several can-
didates for φn(x) are generated randomly, and the one that
maximizes the particular loss function is chosen. The recur-
sive training usually continues to a fixed maximum depth
without pruning. The class distributions P (y|l) are esti-
mated empirically as a histogram of the class labels yi of
the training examples i that reached leaf l. The split func-
tions φn(x) in STFs act on small image patches p of size
d × d pixels. These functions can be (i) the value pi,j,b

of a single pixel (i, j) in color channel b, or (ii) the sum
pi1,j1,b1 + pi2,j2,b2 , (iii) difference pi1,j1,b1 − pi2,j2,b2 , or
(iv) absolute difference |pi1,j1,b1−pi2,j2,b2 | of a pair of pix-
els (i1, j1) and (i2, j2) from possibly different color chan-
nels b1 and b2.

STF, as presented above, provides prediction on the ba-
sis of local context only. To bring a global image context
into play an Image Level Priors (ILP) are proposed. The



support vector machine (SVM) is trained to predict whether
a certain object is present in the image. Output of SVM is
scaled to the probability simplex and pixel level STF pre-
dictions are then multiplied by it. A kernel for the SVM is
constructed by matching the amount of pixels in two given
images that pass through the same nodes in the STF. We
refer the reader to the original publication [11] for more de-
tails on ILP and STF training.

STF with ILP already provides the state of the art re-
sults for supervised semantic segmentation. In [12] a sec-
ond level forest was described, which operated on the rect-
angular count features [12]. Training a second level forest
involves estimation of spatial relation between semantic ob-
jects, which a very challenging task in weakly supervised
scenario, thus we decided to leave for the future work.

3. Multiple Instance Learning

In this section we introduce the reader to the field of
MIL. In MIL the training instances come in multisets (bags)
Bi ⊂ Rd, i = 1, ..., N . Each bag consists of a number of
instances Bi = {x1

i , x
2
i , ..., x

mi
i }. Bag has a label Yi as-

sociated with it, thus a training set consists of set of pairs
{Bi, Yi}Ni=1. Usually, in MIL one considers only binary bag
labels Yi ∈ {−1, 1}, where negative label means that none
of instances in the bag has positive label, while positive bag
label means that at least one of them is positive. Our case
is different, since we may have multiple labels per bag, thus
our label is a set Yi ⊆ {1, ..., C}. All labels are symmet-
ric – if a bag has a certain label, then at least one instance
has it, otherwise none does. Each instance xj

i is assumed
to have one certain label yj

i associated with it, but this la-
bel is not observed during training. There are two possi-
ble objectives for MIL. First on is to learn a bag classifier
fB : Rd → Ybag ⊆ {1, ..., C}C , which predicts labels for
bags. We are interested in the the other objective, which is
to learn instance classifier f : X → {1, ..., C} that predicts
instance labels.

A common way to approach this problem is by a max-
imizing the classification margin over all possible parame-
ters of the classifier and possible labelings of the instances
in bags. SVM formulations are given in [1, 9]. And since
the optimization task is non-convex, the authors use differ-
ent heuristics to solve it. Essentially, the optimizer is free to
vary the classifier’s parameters and change the labels of the
instances to achieve the best possible classification margin.
In the binary case, the constraints are specified such that at
least one sample from a positive bag is classified as positive
and all samples from negative bags remain negative. We
will call this approach an agnostic margin maximization, as
it does not make any assumptions about bag and instance
labels relation. A more detailed review can be found in [6].
We would like to note that while margin maximization has

a solid theoretical foundation in supervised learning, there
is no theoretical support for such principle in MIL, when in-
stance labels are the target of prediction. This implies that a
solution with a maximum margin is not necessarily the one
with high generalization.

Most of the works in MIL only consider bag-level pre-
diction [1, 13, 18]. In our case, we are interested in instance
label prediction. This setting was considered specifically
by [15], where authors train a face detector by considering
patches around a user specified bounding box as a bag. Our
setting is different in the number of labels we have and in
the label interpretation. In our case there is no ”negative”
label, which if present on the bag states that there are no
positive examples in it. Labels in our case are completely
symmetric and only vote for their class being present.

There are few works that consider MIL with multiple la-
bels [16, 18, 5]. Work [16] is closest to our setting, although
they are concerned with bag-level classification for image
categorization. They use a hidden conditional random field
for image categorization with a brief mention of potential
application to instance-level classification. We compare to
them in Section 5. In [5] authors are constructing bags of
multiple segmentation of an image, learning to extract the
one that contains an object. They also use agnostic margin
maximization approach. Authors only provide qualitative
results for pixel label prediction and do not consider cases
when one image can contain more then one object.

4. Multiple instance learning for semantic seg-
mentation

In this section we cast a weakly supervised semantic seg-
mentation as MIL problem. Each image is a bag Bi of pix-
els {xj

i}
mi
j=1, where each pixel xj

i has only one label yj
i .

The image gets a label if at least one pixel in the image has
it (signifying that there is an object of that class in the im-
age), thus image can have multiple labels Yi ⊇ {1, ..., C}.
We observe only image/bag labels during training. In our
particular case, if an image has label ”grass” then there is
at least one pixel of grass in the image. Thus, there is at
least one instance in the bag with certain label if the bag has
it, and none otherwise. Our main concern is on predicting
instances labels, which corresponds to predicting seman-
tic labels for pixels and solving the semantic segmentation
problem.

In this section we first present a STF for MIL solution
based on agnostic margin maximization. We demonstrate
that it suffers from overfitting – although target loss is ef-
ficiently minimized, though accuracy of semantic segmen-
tation is poor. Our conclusion is that this approach is not
applicable. Therefore later we present two different tech-
niques. First one, assumes that forest structure is fixed and
aims to accurately estimate probabilities in the leaf nodes.



The second techniques addresses building better structure
of the forest by means of multitask learning.

4.1. Agnostic Margin Maximizing Random Forest
for MIL (AmmMIL-RF)

In this section we will describe a learning method for
weakly supervised STF that completely follows principles
of the margin maximization - AmmMIL-RF.

In the classical supervised case, for a training set Xs the
loss is given by:

L(f) =
∑

(x,y)∈Xs

l(f(x), y), (2)

where l(ŷ, y) : RC × {1, ..., C} → R is a loss for an indi-
vidual instance-label pair.

For decision trees, split function φn(x) at node n is se-
lected based on a score which measures the purity of the
node. Usual choices are the entropy or the gini index. These
scores can be shown to optimize a certain loss function of
the form in Eq. 2 [3]. These losses are margin maximizing,
meaning that their minimization also maximizes the mar-
gin. In MIL setting we would want to minimize such loss
not only over all possible classifiers f , but also over all pos-
sible labelings of training samples, with the only constraint
that a sample can only be labeled by one of its bag labels,
solving:

min
f,y:yi∈Yi

L(f) =
∑

(xi,yi)

l(f(x), y). (3)

The difference from the supervised case is that now we
have to search through all possible labelings of instances
in the bags and not only through the classifiers parameters.
This makes the problem non-convex. [6] propose to approx-
imately solve this problem by using deterministic annealing
(DA). We extetend their DA approach for random forest in
somewhat similar fashion to semi-supervised random for-
est [3].

To relax the problem we introduce a distribution over the
labels of the instances, p̂, and enforce a controlled uncer-
tainty into the optimization process. The new loss is the
following:

LDA(f, p̂, T ) =
∑
x∈X

∑
y

p̂(y|x)l(fy(x), y) + T
∑
x∈X

H(p̂),

(4)
where l could be any standard margin maximizing
loss, T is a temperature parameter and H(p̂) =
−

∑C
i=1 p̂(i|x)log(p̂(i|x)) is an entropy. When the temper-

ature is large the dominating term is the entropy, thus the
model maintains a high level of the uncertainty and is nicely
convex. When the temperature is lowered (as T → 0), the

original loss becomes more and more important. At fixed
temperature T = τ , the problem reads as follows:

(f∗, p̂∗) = arg min
f,p̂
LDA(f, p̂, τ) (5)

The algorithm to minimize it consists of two stages. First,
with a fixed distribution over labels find an optimal classifier
and in the second stage update the distribution.

With a fixed label distribution, we randomly choose la-
bels for instances according to the current p̂ and train a ran-
dom forest. Then we recompute the optimal distribution
according to the current classifier f . This can be done in
an analytical form, by taking the derivative of the loss and
setting it to zero (note that f is fixed).

p̂∗(i|x) = exp(− l(f(x)) + T

T
)/Z(x), (6)

whereZ(x) is a normalization factor. We also set the proba-
bility of a label that is not present in the image correspond-
ing to current pixel to zero: p̂∗(i|xj) = 0;∀xj : i 6∈ Yj .
These iterations are implemented together with a gradual
cooling of T . We started with T0 = 10, which essentially
turns p̂ uniform and used the exponential cooling scheme
Ti = T0 · 0.5i.

Unfortunately this naive margin maximizing approach
overfits, apparent from our experiments. We evaluate this
approach on the MSRC21 dataset for semantic segmenta-
tion. We train an ILP after each iteration using current ran-
dom forest. Figure 3 show the results on test accuracy and
training loss (3) for the first five iterations. We see that a
decrease in the training loss does not result in the increase
in the test accuracy as one would expect. In fact we know
that the problem lies with this loss and and not with the
optimization: we repeat the experiment with a good initial
model (i.e., fully supervised STF model) and an appropri-
ately low initial temperature. Whilst the loss is still decreas-
ing at each iteration, the test accuracy drops from 64% to
40%. This overfitting effect may be due to the high degree
of freedom when optimizing over both classifier parameters
and the exponentially many possible labelings.

Since this naive solution fails for semantic segmentation
MIL, where bags have multiple labels and the target is in-
stance label prediction, we present a set of solutions, which
is tailored for this MIL scenario. We concentrate on differ-
ent parts of the STF, first on estimating correct probabilities
in the leaf nodes and then on building a better structure of
the tree, presenting two algorithms PPinv and MT-STF.

4.2. Estimating Leaf Probabilities (PPinv)

Now we will focus on producing good class probability
estimates in the leaf nodes of the STF. Let us assume that
the structure of the forest g(x) (as defined in Section 2) is
given and consider a particular leaf l in the forest. For each



Figure 3. This plot depicts loss on training set and semantic seg-
mentation accuracy on test set as a function of deterministic an-
nealing iterations. As one can see, steady decline of loss does not
lead to any improvement in semantic segmentation accuracy. Fur-
ther iterations reduce the loss even further, but the accuracy does
not improve. We did not plot them because of scale problems.

leaf l, there is a group of corresponding pixels. Let y be
a pixel label and Y a set of labels of an image that pixel
belongs to. For each of these pixels we want to know the
probability P (y = j|l) of it having a label j. However,
we can only observe the probability of this pixel belonging
to an image that has a label i: P (i ∈ Y |l). To shorten the
notation, we will further omit conditioning on a leaf, since it
appears ubiquitously, writing just P (y = j) and P (i ∈ Y ).
We can factorize P (i ∈ Y ) probabilities in the following
form:

P (i ∈ Y ) =
C∑

j=1

P (i ∈ Y |y = j)P (y = j). (7)

We see that image labels probabilities are connected to
the desired pixel label probabilities through the conditional
probabilities P (i ∈ Y |y = j). These are not known, but
having a good approximation of them would allow us to
significantly reduce the degrees of freedom and uncertainty
in the choice of estimates of P (y = j). These conditionals
could be rewritten as:

P (i ∈ Y |y = j) = P (i ∈ Y |j ∈ Y )
P (y = j|j ∈ Y, i ∈ Y )

P (y = j|j ∈ Y )
.

(8)
Here we propose to make an assumption and let the frac-

tion in the right hand side to be equal to one, thus approxi-
mating P (i ∈ Y |y = j) ≈ P (i ∈ Y |j ∈ Y ). In words, the
probability of seeing a ”car” pixel in an image with a label
”car” is not dependant on this image having an additional
label ”house”. Formally:

P (y = j|j ∈ Y, i ∈ Y ) = P (y = j|j ∈ Y ). (9)

Let us introduce a few notation. Let w be a vector of
pixel-level class probabilities in the leaf, such that wi =

P (y = i). Let matrix A be the matrix of conditional proba-
bilities, such thatAij = P (i ∈ Y |j ∈ Y ) and let z be a vec-
tor of image-level probabilities, such that zi = P (i ∈ Y ).
Using this notation Eq.( 7) can be written as linear system
AwT = zT . Matrix A is usually ill determined, thus many
solutions are possible. We need a rule to select one of them.
We choose to select the one with minimal L2 norm, since it
corresponds to the most uniform allocation of weights to the
classes. In this formulation the problem is convex and has a
global minimizer, which is easily computable by taking the
pseudoinverse transform of matrix A. Thus our solution is
ŵT = A†zT . In principle, we should also take into account
the probabilistic nature of w and restrict its domain to the
simplex. In practice, the our ŵ is always very close to the
simplex, hence enforcing this constraint does not change
our solution significantly, but significantly increases com-
putation.

Our proposed algorithm, PPinv, requires only the pseu-
doinverse matrix computation for each leaf, in addition to
learning the tree structure g(x). Restricting the possible w
to only those that satisfy the approximation of the linear
system (7) dramatically reduces the degree of freedom and
thus regularizes the solution, preventing overfitting.

4.3. Multitask Learning of STF Structure (MTL-
RF)

In this section we will address the problem of building a
better structure of the STF. The structure of the forest in STF
corresponds to the generic arrangement of image patches,
that is relevant to a structure of the visual world. Each split,
ideally, tries to separate image patches into more homoge-
nous groups. It is reasonable to assume that this structure is
the same for different tasks, defined in the image domain. If
we could use an external task, which is defined on the same
domain (digital images) and has a fully labeled training set,
we could ”import” useful structures from that domain.

We formalize this intuition within a MTL framework.
MTL is a machine learning paradigm that learns a task to-
gether with other related tasks at the same time, using a
shared representation. Without the loss of generality we
assume that we have two tasks. Given two training sets
{(xt

i, y
t
i)}N

t

i=1, t = {1, 2}, where the domain of the in-
stances are the same ∀t, i : xt

i ∈ X the aim is to learn
classifiers for both tasks F t(G(x)) : X → Yt, such that a
the sum of their errors is minimal. G(x) is shared by both
classifiers and F t is task dependant. By restraining classi-
fiers to have a shared part, the degree of freedom is reduced.
This can be relaxed so that Gt is also task dependant, but
a regularizer that penalizes the difference between G1 and
G2 is introduced [2]. An even more general Bayesian ap-
proach can be taken, where only a prior on the classifiers
is shared [17]. One can also be interested only in the pre-
diction for one main task, as in our case, then F2 can be



ignored later, although it is optimized during training. Here
we show that MTL is very much applicable in a MIL sce-
nario, where it can help to deal with a significant amount of
ambiguity in the data.

As a supplementary task we consider geometry context
estimation. The dataset from [8] is used. In this dataset,
each pixel is labeled according to its geometric property –
vertical, horizontal, porus, solid, etc (Figure 1, top right).
We need to construct training sets Xt = {(xt

i, y
t
i)}N

t

i=1, t =
1, 2 for both tasks. For the geometric task pixelwise label-
ing is available. To construct a training set for the main
task where semantic classes are objects, we sample labels
for the pixels uniformly from the labels of corresponding
images, this would correspond to a step of the deterministic
annealing algorithm with high temperature. Such weak su-
pervision helps classifier to distinguish between objects that
do not appear in the same images.

Following the notation introduced in Section 2, we pro-
pose to let the classifiers share the structure g(x) of a de-
cision forest and let the probabilities in the leafs be task
dependant. The loss for a random forest we optimize is the
following:

L(f1, f2, g) =
2∑

t=1

1
|Xt|

∑
(x,y)∈Xt

l(f t(g(x)), y) (10)

Here, l is the same as in Eq.( 2). After building the structure
of the forest in this way, we can apply the PPinv algorithm
to acquire good probability estimates for the leafs. Train-
ing the SVM for ILP, once the forest is constructed, is no
different from the single task case. The resulting classifier
has the same form as a standard STF and requires no multi-
task related input during testing. It also does not require any
geometry specific features for learning. The additional task
is only used for the training and is ignored afterwards. In
principle, any other secondary task can be considered, we
can even consider several these simultaneously.

5. Experiments
We conducted experiments on the Microsoft Research

Cambridge dataset (MSRC21) and VOC2007 [4]. The ba-
sic implementation of STF was kindly provided by authors
of [11], parameters (number and depth of trees) where kept
the same. We compare our three algorithms: AmmMIL-
RF, AmmMIL-RF+PPinv, and MTL-RF+PPinv.

5.1. Semantic Segmentation

MSRC21 Dataset [12]. This is a multiclass dataset –
with total 21 classes the average number of 3 objects per
image and about 80% of images having more then one ob-
ject in them. We use the same split into training and test
set as [11]. First we investigate the accuracy of semantic

Algorithms Test Train
no ILP ILP ILP

AmmMIL-RF 0.14 0.41 0.54
AmmMIL-RF+PPinv 0.35 0.47 0.61
MTL-RF+PPinv 0.38 0.51 0.63
Supervised (56) 0.33 0.50 0.85
Supervised (276) 0.48 0.64 0.83

Table 1. Accuracy of the semantic segmentation on MSRC. Su-
pervised (56) and (276) correspond to STF classifiers trained with
full pixelwise supervision on only validation (56 images) and only
training (276 images) set respectively.

segmentation. In Table 5.1 the results are presented. The
accuracy without and with ILP are presented in the first and
second columns respectively. As a good baseline we pro-
vide results for a pixelwise supervised STF trained on 56
(validation set only) and 276 images (training set) [11]. The
reader is invited to visually inspect the results, presented in
Figure. 5.1. MTL-RF+PPinv algorithm performs as good
as a supervised one that is trained on 56 images.

We also evaluate the semantic segmentation accuracy on
the training set (Table 5.1, last column) to investigate how
well the unobserved pixel labels were inferred for images
with observed imagewise labels. We can see, that MTL-
RF+PPinv is again the winner and its accuracy is equal to
test set accuracy of supervised algorithm. Essentially, if one
can provide accurate image labels, then a semantic segmen-
tation for these images can be produced within the accuracy
of a supervised algorithm’s generalization.

Authors of [16], which is concerned with image catego-
rization (bag level prediction), briefly mention that their ap-
proach is applicable to predicting pixel labels, but the only
experimental validation that they provide is the average area
under the ROC curve (AUC). We outperform their AUC of
0.86 by achieving AUC of 0.89 with MTL-RF+PPinv. Fur-
ther comparison is not possible since no accuracy or seg-
mentation results where provided in that paper. In [14] a
pLSA model over a codebook of features (SIFT, color, po-
sition) produced by unsupervised k-means clustering is em-
ployed. The output of pLSA is then post-processed by an
MRF to enforce segments continuity. In contrast to this
work, we focussed on learning discriminative low level fea-
tures (STF) in a weakly supervised way. Compared to [14]
we have a superior speed (in test time it takes 2 seconds for
a label of every pixel to be inferred vs. 2-4 seconds for ev-
ery tenth pixel along 2 dimensions, which is ≈ 100 slower,
although the accuracy of Verbeek is superior: 60%.

VOC 2007 Segmentation Dataset [4]. This dataset
contains 21 extremely challenging classes including back-
ground. We train on this data using the trainval split and
keeping parameters as for MSRC21. Even supervised meth-
ods do not yield satisfactory results on this data. We report
results of our algorithms, to broaden the scope of evalua-



Figure 4. MSRC21 segmentation results. Note, that MTL-RF+PPinv is much more spatially consistent then AmmMIL-RF. Among less
successful results on the right the typical confusions can be seen - road is confused with grass, body with face and bright buildings in the
background with sky. Case of body and face is a particulary hard one, since in the most images they are seen together and there is no way
to separate one from another without additional supervision.

tion. AmmMIL-RF has total per pixel accuracy of 0.32 and
average per class accuracy of 0.07, while MTL-RF+PPinv
has 0.41 and 0.07 respectively. These results are even com-
parable to some supervised approaches listed in [4] , like
”Brookes” and ”INRIANormal”, having 0.085 and 0.077
average per class accuracy.

5.2. Detailed Analysis of MTL-RF and PPinv

The two conceptual components of the STF are forest
structure and probability estimates in the leaf nodes. We
proposed techniques for enhancing both. To analyze these
enhancements independently, we perform the following set
of experiments. We take three forests - one trained with
the full pixelwise supervision, one trained by AmmMIL-
RF algorithm and one trained by MTL-RF. Then, for each
forest, we assign class probabilities in the leaf nodes us-
ing pixelwise supervision, PPinv and using random sam-
pling of pixel label from the corresponding image labels
(AmmMIL-RF solution with the highest temperature). Fi-
nally, we use ILP based on the respective forest for all meth-
ods. Such comparison would allow us to investigate how
the structure and the probability estimate behaves in de-
tail. The results are presented in Table 5.2. It is evident
that both, forest structure and probability estimate in leafs
are important. Structure of MTL-RF is almost as good as
pixelwise supervised. PPinv probability estimation algo-
rithm brings significant improvement to accuracy of seman-
tic segmentation for all structures, although an improve-
ment for MTL-RF and supervised one are more significant
then for AmmMIL-RF. To validate the assumption (9), that
was used to construct PPinv algorithm we measure the dif-
ference between true P (i ∈ Y |y = j) its approximation

Figure 5. On the left is the histogram of the differences between
true P (i ∈ Y |y = j) and it’s approximation ≈ P (i ∈ Y |j ∈ Y ).
On the right, the histogram of differences between estimations of
P (y = i|l) by PPinv and pixelwise labeling. Both are in logarith-
mic scale.

Structure Leaf Probabilities
Rand. PPinv Supervised

Supervised (276) 0.36 0.51 0.64
AmmMIL-RF 0.41 0.46 0.59
MTL-RF 0.37 0.51 0.62

Table 2. Accuracy of different combinations of STF structure and
estimation of class probabilities in leafs. Supervised (276) corre-
spond to an STF classifier trained with full pixelwise supervision
on full training set of 276 images.

P (i ∈ Y |j ∈ Y ). Also we measured the difference be-
tween PPinv estimated probabilities and the ones obtained
from pixelwise labeling evaluated on MSRC21 dataset (Fig-
ure 5.2). The differences are usually around zero, although
there are some deviations. This implies the assumption (9);



Algorithms Mean Av.Prec. Av. AUC
AmmMIL-RF 0.68 0.92
MTL-RF 0.70 0.93
Supervised (56) 0.68 0.93
Supervised (276) 0.70 0.94

Table 3. Image categorization results on MSRC.

5.3. Image Categorization

Image categorization is itself an important task, also im-
age level priors for the semantic segmentation are derived
from it. We compared the mean average precision and av-
erage AUC of categorizers, obtained by training forest by
AmmMIL-RF and by MTL-RF. Results are presented in
Table 5.3. For the purity of the experiment, we report the
accuracy of the SVM predictor alone, in contrast to [11],
where results of SVM where multiplied by the average re-
sponse of the random forest for the pixels in the image.
This is done to better separate the bag level prediction and
instance level prediction. We outperform results of [16];
there only average AUC results were reported. In this ex-
periments MTL is able to improve the performance of the
categorizer to the level of the supervised one and outscores
the competitor [16].

6. Conclusion

In this paper we have presented techniques for weakly
supervised learning for semantic segmentation. We casted
this task as an MIL problem. We discovered that a naive ap-
plication of the standard MIL techniques, based on margin
maximization over all possible parameters of the classifier
and possible labelings of the instances in bags, overfitts and
thus fails to solve the problem. We proposed a novel regu-
larized way to estimate the unobserved instance label prob-
abilities in the STF framework, which does not suffer from
overfitting. We also made use of the external dataset for
geometric context estimation to further regularize our solu-
tion. By this we demonstrated that the amount of supervi-
sion required to learn a semantic segmentation classifier can
be significantly reduced.

As future work we plan to investigate the scenario where
we have weak supervision, but a small amount of pixel-
wise annotation is available. This small supervision could
be employed to obtain better estimate of matrix of condi-
tional probabilities in Eq.(7). Furthermore, a second level
segmentation forest used in [11] may by trained be utilizing
this small pixelwise supervision. Considering more differ-
ent supplementary tasks for MTL is another perspective for
further improvements. In future, we aim to reach the level
of the state of the art systems that require fully annotated
data for training.

This work has been partially supported by the Swiss Na-

tional Science Foundation under grant #200021-117946 and
partially by the EU under the SIMBAD project, (FP7-FET
#213250).
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